🐈nanobot: hello world!

This commit is contained in:
Re-bin
2026-02-01 07:36:42 +00:00
parent 086d65ace5
commit d4cc48afd5
67 changed files with 5946 additions and 2 deletions

21
LICENSE Normal file
View File

@@ -0,0 +1,21 @@
MIT License
Copyright (c) 2025 nanobot contributors
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

287
README.md
View File

@@ -1,2 +1,285 @@
# nanobot
"nanobot: Extremely Simple and Lightweight Clawdbot Implementation"
<div align="center">
<img src="nanobot_logo.png" alt="nanobot" width="500">
<h1>nanobot: Your Lightweight Personal AI Assistant</h1>
<p>
<a href="https://pypi.org/project/nanobot-ai/"><img src="https://img.shields.io/pypi/v/nanobot-ai" alt="PyPI"></a>
<img src="https://img.shields.io/badge/python-≥3.11-blue" alt="Python">
<img src="https://img.shields.io/badge/license-MIT-green" alt="License">
</p>
</div>
🐈 **nanobot** is an **ultra-lightweight** personal AI assistant inspired by [Clawdbot](https://github.com/openclaw/openclaw)
⚡️ Delivers core agent functionality in just **~4,000** lines of code — **99% smaller** than Clawdbot's 430k+ lines.
## 📢 News
- **2025-02-01** 🎉 nanobot launched! Welcome to try 🐈 nanobot!
## Key Features of nanobot:
⚡️ **Ultra-Lightweight**: At just ~4,000 lines of code, nanobot is 99% smaller than comparable AI assistants while delivering full functionality.
🔬 **Research-Ready**: Clean, readable architecture makes it perfect for researchers and developers who need to understand, modify, or extend the codebase.
⚡️ **Lightning Fast**: Minimal footprint means faster startup, lower resource usage, and quicker iteration cycles.
## 🏗️ Architecture
<p align="center">
<img src="nanobot_arch.png" alt="nanobot architecture" width="800">
</p>
## ✨ Features
<table align="center">
<tr align="center">
<th><p align="center">🔍 Web Search</p></th>
<th><p align="center">💻 Code & Files</p></th>
<th><p align="center">📅 Scheduled Tasks</p></th>
<th><p align="center">🧠 Memory</p></th>
</tr>
<tr>
<td align="center"><p align="center"><img src="case/search.gif" width="180" height="400"></p></td>
<td align="center"><p align="center"><img src="case/code.gif" width="180" height="400"></p></td>
<td align="center"><p align="center"><img src="case/scedule.gif" width="180" height="400"></p></td>
<td align="center"><p align="center"><img src="case/memory.gif" width="180" height="400"></p></td>
</tr>
<tr>
<td align="center">Search real-time info</td>
<td align="center">Read, write, execute</td>
<td align="center">Cron jobs & reminders</td>
<td align="center">Remember context</td>
</tr>
</table>
## 📦 Install
**Install from PyPi**
```bash
pip install nanobot-ai
```
**Install from source** (recommended for development)
```bash
git clone https://github.com/HKUDS/nanobot.git
cd nanobot
pip install -e .
```
## 🚀 Quick Start
> [!TIP]
> Set your API key in `~/.nanobot/config.json`. Get one at [OpenRouter](https://openrouter.ai/keys).
**1. Initialize**
```bash
nanobot onboard
```
**2. Configure** (`~/.nanobot/config.json`)
```json
{
"providers": {
"openrouter": {
"apiKey": "sk-or-v1-xxx"
}
}
}
```
**3. Chat**
```bash
nanobot agent -m "What is 2+2?"
```
That's it! You have a working AI assistant in 2 minutes.
## 💬 Chat Apps
Talk to your nanobot through Telegram or WhatsApp — anytime, anywhere.
| Channel | Setup |
|---------|-------|
| **Telegram** | Easy (just a token) |
| **WhatsApp** | Medium (scan QR) |
<details>
<summary><b>Telegram</b> (Recommended)</summary>
**1. Create a bot**
- Open Telegram, search `@BotFather`
- Send `/newbot`, follow prompts
- Copy the token
**2. Configure**
```json
{
"channels": {
"telegram": {
"enabled": true,
"token": "YOUR_BOT_TOKEN",
"allowFrom": ["YOUR_USER_ID"]
}
}
}
```
> Get your user ID from `@userinfobot` on Telegram.
**3. Run**
```bash
nanobot gateway
```
</details>
<details>
<summary><b>WhatsApp</b></summary>
Requires **Node.js ≥18**.
**1. Link device**
```bash
nanobot channels login
# Scan QR with WhatsApp → Settings → Linked Devices
```
**2. Configure**
```json
{
"channels": {
"whatsapp": {
"enabled": true,
"allowFrom": ["+1234567890"]
}
}
}
```
**3. Run** (two terminals)
```bash
# Terminal 1
nanobot channels login
# Terminal 2
nanobot gateway
```
</details>
## ⚙️ Configuration
<details>
<summary><b>Full config example</b></summary>
```json
{
"agents": {
"defaults": {
"model": "anthropic/claude-opus-4-5"
}
},
"providers": {
"openrouter": {
"apiKey": "sk-or-v1-xxx"
}
},
"channels": {
"telegram": {
"enabled": true,
"token": "123456:ABC...",
"allowFrom": ["123456789"]
},
"whatsapp": {
"enabled": false
}
},
"tools": {
"web": {
"search": {
"apiKey": "BSA..."
}
}
}
}
```
</details>
**API Keys:**
- **OpenRouter**: https://openrouter.ai/keys
- **Brave Search** (optional): https://brave.com/search/api/
## CLI Reference
| Command | Description |
|---------|-------------|
| `nanobot onboard` | Initialize config & workspace |
| `nanobot agent -m "..."` | Chat with the agent |
| `nanobot agent` | Interactive chat mode |
| `nanobot gateway` | Start the gateway |
| `nanobot status` | Show status |
| `nanobot channels login` | Link WhatsApp (scan QR) |
| `nanobot channels status` | Show channel status |
<details>
<summary><b>Scheduled Tasks (Cron)</b></summary>
```bash
# Add a job
nanobot cron add --name "daily" --message "Good morning!" --cron "0 9 * * *"
nanobot cron add --name "hourly" --message "Check status" --every 3600
# List jobs
nanobot cron list
# Remove a job
nanobot cron remove <job_id>
```
</details>
## 📁 Project Structure
```
nanobot/
├── agent/ # 🧠 Core agent logic
│ ├── loop.py # Agent loop (LLM ↔ tool execution)
│ ├── context.py # Prompt builder
│ ├── memory.py # Persistent memory
│ ├── skills.py # Skills loader
│ └── tools/ # Built-in tools
├── skills/ # 🎯 Bundled skills (github, weather, tmux...)
├── channels/ # 📱 Telegram, WhatsApp
├── bus/ # 🚌 Message routing
├── cron/ # ⏰ Scheduled tasks
├── providers/ # 🤖 LLM providers (OpenRouter, etc.)
├── session/ # 💬 Conversation sessions
├── config/ # ⚙️ Configuration
└── cli/ # 🖥️ Commands
```
## 🗺️ Roadmap
- [ ] **Multi-modal** — See and hear (images, voice, video)
- [ ] **Long-term memory** — Never forget important context
- [ ] **Better reasoning** — Multi-step planning and reflection
- [ ] **More integrations** — Discord, Slack, email, calendar
- [ ] **Self-improvement** — Learn from feedback and mistakes
**Want to help?** Pick an item and [open a PR](https://github.com/HKUDS/nanobot/pulls)!
## 🤝 Contribute
PRs welcome! The codebase is intentionally small and readable.

26
bridge/package.json Normal file
View File

@@ -0,0 +1,26 @@
{
"name": "nanobot-whatsapp-bridge",
"version": "0.1.0",
"description": "WhatsApp bridge for nanobot using Baileys",
"type": "module",
"main": "dist/index.js",
"scripts": {
"build": "tsc",
"start": "node dist/index.js",
"dev": "tsc && node dist/index.js"
},
"dependencies": {
"@whiskeysockets/baileys": "7.0.0-rc.9",
"ws": "^8.17.0",
"qrcode-terminal": "^0.12.0",
"pino": "^9.0.0"
},
"devDependencies": {
"@types/node": "^20.14.0",
"@types/ws": "^8.5.10",
"typescript": "^5.4.0"
},
"engines": {
"node": ">=20.0.0"
}
}

50
bridge/src/index.ts Normal file
View File

@@ -0,0 +1,50 @@
#!/usr/bin/env node
/**
* nanobot WhatsApp Bridge
*
* This bridge connects WhatsApp Web to nanobot's Python backend
* via WebSocket. It handles authentication, message forwarding,
* and reconnection logic.
*
* Usage:
* npm run build && npm start
*
* Or with custom settings:
* BRIDGE_PORT=3001 AUTH_DIR=~/.nanobot/whatsapp npm start
*/
// Polyfill crypto for Baileys in ESM
import { webcrypto } from 'crypto';
if (!globalThis.crypto) {
(globalThis as any).crypto = webcrypto;
}
import { BridgeServer } from './server.js';
import { homedir } from 'os';
import { join } from 'path';
const PORT = parseInt(process.env.BRIDGE_PORT || '3001', 10);
const AUTH_DIR = process.env.AUTH_DIR || join(homedir(), '.nanobot', 'whatsapp-auth');
console.log('🐈 nanobot WhatsApp Bridge');
console.log('========================\n');
const server = new BridgeServer(PORT, AUTH_DIR);
// Handle graceful shutdown
process.on('SIGINT', async () => {
console.log('\n\nShutting down...');
await server.stop();
process.exit(0);
});
process.on('SIGTERM', async () => {
await server.stop();
process.exit(0);
});
// Start the server
server.start().catch((error) => {
console.error('Failed to start bridge:', error);
process.exit(1);
});

104
bridge/src/server.ts Normal file
View File

@@ -0,0 +1,104 @@
/**
* WebSocket server for Python-Node.js bridge communication.
*/
import { WebSocketServer, WebSocket } from 'ws';
import { WhatsAppClient, InboundMessage } from './whatsapp.js';
interface SendCommand {
type: 'send';
to: string;
text: string;
}
interface BridgeMessage {
type: 'message' | 'status' | 'qr' | 'error';
[key: string]: unknown;
}
export class BridgeServer {
private wss: WebSocketServer | null = null;
private wa: WhatsAppClient | null = null;
private clients: Set<WebSocket> = new Set();
constructor(private port: number, private authDir: string) {}
async start(): Promise<void> {
// Create WebSocket server
this.wss = new WebSocketServer({ port: this.port });
console.log(`🌉 Bridge server listening on ws://localhost:${this.port}`);
// Initialize WhatsApp client
this.wa = new WhatsAppClient({
authDir: this.authDir,
onMessage: (msg) => this.broadcast({ type: 'message', ...msg }),
onQR: (qr) => this.broadcast({ type: 'qr', qr }),
onStatus: (status) => this.broadcast({ type: 'status', status }),
});
// Handle WebSocket connections
this.wss.on('connection', (ws) => {
console.log('🔗 Python client connected');
this.clients.add(ws);
ws.on('message', async (data) => {
try {
const cmd = JSON.parse(data.toString()) as SendCommand;
await this.handleCommand(cmd);
ws.send(JSON.stringify({ type: 'sent', to: cmd.to }));
} catch (error) {
console.error('Error handling command:', error);
ws.send(JSON.stringify({ type: 'error', error: String(error) }));
}
});
ws.on('close', () => {
console.log('🔌 Python client disconnected');
this.clients.delete(ws);
});
ws.on('error', (error) => {
console.error('WebSocket error:', error);
this.clients.delete(ws);
});
});
// Connect to WhatsApp
await this.wa.connect();
}
private async handleCommand(cmd: SendCommand): Promise<void> {
if (cmd.type === 'send' && this.wa) {
await this.wa.sendMessage(cmd.to, cmd.text);
}
}
private broadcast(msg: BridgeMessage): void {
const data = JSON.stringify(msg);
for (const client of this.clients) {
if (client.readyState === WebSocket.OPEN) {
client.send(data);
}
}
}
async stop(): Promise<void> {
// Close all client connections
for (const client of this.clients) {
client.close();
}
this.clients.clear();
// Close WebSocket server
if (this.wss) {
this.wss.close();
this.wss = null;
}
// Disconnect WhatsApp
if (this.wa) {
await this.wa.disconnect();
this.wa = null;
}
}
}

3
bridge/src/types.d.ts vendored Normal file
View File

@@ -0,0 +1,3 @@
declare module 'qrcode-terminal' {
export function generate(text: string, options?: { small?: boolean }): void;
}

180
bridge/src/whatsapp.ts Normal file
View File

@@ -0,0 +1,180 @@
/**
* WhatsApp client wrapper using Baileys.
* Based on OpenClaw's working implementation.
*/
/* eslint-disable @typescript-eslint/no-explicit-any */
import makeWASocket, {
DisconnectReason,
useMultiFileAuthState,
fetchLatestBaileysVersion,
makeCacheableSignalKeyStore,
} from '@whiskeysockets/baileys';
import { Boom } from '@hapi/boom';
import qrcode from 'qrcode-terminal';
import pino from 'pino';
const VERSION = '0.1.0';
export interface InboundMessage {
id: string;
sender: string;
content: string;
timestamp: number;
isGroup: boolean;
}
export interface WhatsAppClientOptions {
authDir: string;
onMessage: (msg: InboundMessage) => void;
onQR: (qr: string) => void;
onStatus: (status: string) => void;
}
export class WhatsAppClient {
private sock: any = null;
private options: WhatsAppClientOptions;
private reconnecting = false;
constructor(options: WhatsAppClientOptions) {
this.options = options;
}
async connect(): Promise<void> {
const logger = pino({ level: 'silent' });
const { state, saveCreds } = await useMultiFileAuthState(this.options.authDir);
const { version } = await fetchLatestBaileysVersion();
console.log(`Using Baileys version: ${version.join('.')}`);
// Create socket following OpenClaw's pattern
this.sock = makeWASocket({
auth: {
creds: state.creds,
keys: makeCacheableSignalKeyStore(state.keys, logger),
},
version,
logger,
printQRInTerminal: false,
browser: ['nanobot', 'cli', VERSION],
syncFullHistory: false,
markOnlineOnConnect: false,
});
// Handle WebSocket errors
if (this.sock.ws && typeof this.sock.ws.on === 'function') {
this.sock.ws.on('error', (err: Error) => {
console.error('WebSocket error:', err.message);
});
}
// Handle connection updates
this.sock.ev.on('connection.update', async (update: any) => {
const { connection, lastDisconnect, qr } = update;
if (qr) {
// Display QR code in terminal
console.log('\n📱 Scan this QR code with WhatsApp (Linked Devices):\n');
qrcode.generate(qr, { small: true });
this.options.onQR(qr);
}
if (connection === 'close') {
const statusCode = (lastDisconnect?.error as Boom)?.output?.statusCode;
const shouldReconnect = statusCode !== DisconnectReason.loggedOut;
console.log(`Connection closed. Status: ${statusCode}, Will reconnect: ${shouldReconnect}`);
this.options.onStatus('disconnected');
if (shouldReconnect && !this.reconnecting) {
this.reconnecting = true;
console.log('Reconnecting in 5 seconds...');
setTimeout(() => {
this.reconnecting = false;
this.connect();
}, 5000);
}
} else if (connection === 'open') {
console.log('✅ Connected to WhatsApp');
this.options.onStatus('connected');
}
});
// Save credentials on update
this.sock.ev.on('creds.update', saveCreds);
// Handle incoming messages
this.sock.ev.on('messages.upsert', async ({ messages, type }: { messages: any[]; type: string }) => {
if (type !== 'notify') return;
for (const msg of messages) {
// Skip own messages
if (msg.key.fromMe) continue;
// Skip status updates
if (msg.key.remoteJid === 'status@broadcast') continue;
const content = this.extractMessageContent(msg);
if (!content) continue;
const isGroup = msg.key.remoteJid?.endsWith('@g.us') || false;
this.options.onMessage({
id: msg.key.id || '',
sender: msg.key.remoteJid || '',
content,
timestamp: msg.messageTimestamp as number,
isGroup,
});
}
});
}
private extractMessageContent(msg: any): string | null {
const message = msg.message;
if (!message) return null;
// Text message
if (message.conversation) {
return message.conversation;
}
// Extended text (reply, link preview)
if (message.extendedTextMessage?.text) {
return message.extendedTextMessage.text;
}
// Image with caption
if (message.imageMessage?.caption) {
return `[Image] ${message.imageMessage.caption}`;
}
// Video with caption
if (message.videoMessage?.caption) {
return `[Video] ${message.videoMessage.caption}`;
}
// Document with caption
if (message.documentMessage?.caption) {
return `[Document] ${message.documentMessage.caption}`;
}
return null;
}
async sendMessage(to: string, text: string): Promise<void> {
if (!this.sock) {
throw new Error('Not connected');
}
await this.sock.sendMessage(to, { text });
}
async disconnect(): Promise<void> {
if (this.sock) {
this.sock.end(undefined);
this.sock = null;
}
}
}

16
bridge/tsconfig.json Normal file
View File

@@ -0,0 +1,16 @@
{
"compilerOptions": {
"target": "ES2022",
"module": "ESNext",
"moduleResolution": "node",
"esModuleInterop": true,
"strict": true,
"skipLibCheck": true,
"outDir": "./dist",
"rootDir": "./src",
"declaration": true,
"resolveJsonModule": true
},
"include": ["src/**/*"],
"exclude": ["node_modules", "dist"]
}

BIN
case/code.gif Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 12 MiB

BIN
case/memory.gif Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.6 MiB

BIN
case/scedule.gif Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.8 MiB

BIN
case/search.gif Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.0 MiB

6
nanobot/__init__.py Normal file
View File

@@ -0,0 +1,6 @@
"""
nanobot - A lightweight AI agent framework
"""
__version__ = "0.1.0"
__logo__ = "🐈"

8
nanobot/__main__.py Normal file
View File

@@ -0,0 +1,8 @@
"""
Entry point for running nanobot as a module: python -m nanobot
"""
from nanobot.cli.commands import app
if __name__ == "__main__":
app()

View File

@@ -0,0 +1,8 @@
"""Agent core module."""
from nanobot.agent.loop import AgentLoop
from nanobot.agent.context import ContextBuilder
from nanobot.agent.memory import MemoryStore
from nanobot.agent.skills import SkillsLoader
__all__ = ["AgentLoop", "ContextBuilder", "MemoryStore", "SkillsLoader"]

196
nanobot/agent/context.py Normal file
View File

@@ -0,0 +1,196 @@
"""Context builder for assembling agent prompts."""
from pathlib import Path
from typing import Any
from nanobot.agent.memory import MemoryStore
from nanobot.agent.skills import SkillsLoader
class ContextBuilder:
"""
Builds the context (system prompt + messages) for the agent.
Assembles bootstrap files, memory, skills, and conversation history
into a coherent prompt for the LLM.
"""
BOOTSTRAP_FILES = ["AGENTS.md", "SOUL.md", "USER.md", "TOOLS.md", "IDENTITY.md"]
def __init__(self, workspace: Path):
self.workspace = workspace
self.memory = MemoryStore(workspace)
self.skills = SkillsLoader(workspace)
def build_system_prompt(self, skill_names: list[str] | None = None) -> str:
"""
Build the system prompt from bootstrap files, memory, and skills.
Args:
skill_names: Optional list of skills to include.
Returns:
Complete system prompt.
"""
parts = []
# Core identity
parts.append(self._get_identity())
# Bootstrap files
bootstrap = self._load_bootstrap_files()
if bootstrap:
parts.append(bootstrap)
# Memory context
memory = self.memory.get_memory_context()
if memory:
parts.append(f"# Memory\n\n{memory}")
# Skills - progressive loading
# 1. Always-loaded skills: include full content
always_skills = self.skills.get_always_skills()
if always_skills:
always_content = self.skills.load_skills_for_context(always_skills)
if always_content:
parts.append(f"# Active Skills\n\n{always_content}")
# 2. Available skills: only show summary (agent uses read_file to load)
skills_summary = self.skills.build_skills_summary()
if skills_summary:
parts.append(f"""# Skills
The following skills extend your capabilities. To use a skill, read its SKILL.md file using the read_file tool.
Skills with available="false" need dependencies installed first - you can try installing them with apt/brew.
{skills_summary}""")
return "\n\n---\n\n".join(parts)
def _get_identity(self) -> str:
"""Get the core identity section."""
from datetime import datetime
now = datetime.now().strftime("%Y-%m-%d %H:%M (%A)")
workspace_path = str(self.workspace.expanduser().resolve())
return f"""# nanobot 🐈
You are nanobot, a helpful AI assistant. You have access to tools that allow you to:
- Read, write, and edit files
- Execute shell commands
- Search the web and fetch web pages
- Send messages to users on chat channels
## Current Time
{now}
## Workspace
Your workspace is at: {workspace_path}
- Memory files: {workspace_path}/memory/MEMORY.md
- Daily notes: {workspace_path}/memory/YYYY-MM-DD.md
- Custom skills: {workspace_path}/skills/{{skill-name}}/SKILL.md
IMPORTANT: When responding to direct questions or conversations, reply directly with your text response.
Only use the 'message' tool when you need to send a message to a specific chat channel (like WhatsApp).
For normal conversation, just respond with text - do not call the message tool.
Always be helpful, accurate, and concise. When using tools, explain what you're doing.
When remembering something, write to {workspace_path}/memory/MEMORY.md"""
def _load_bootstrap_files(self) -> str:
"""Load all bootstrap files from workspace."""
parts = []
for filename in self.BOOTSTRAP_FILES:
file_path = self.workspace / filename
if file_path.exists():
content = file_path.read_text(encoding="utf-8")
parts.append(f"## {filename}\n\n{content}")
return "\n\n".join(parts) if parts else ""
def build_messages(
self,
history: list[dict[str, Any]],
current_message: str,
skill_names: list[str] | None = None
) -> list[dict[str, Any]]:
"""
Build the complete message list for an LLM call.
Args:
history: Previous conversation messages.
current_message: The new user message.
skill_names: Optional skills to include.
Returns:
List of messages including system prompt.
"""
messages = []
# System prompt
system_prompt = self.build_system_prompt(skill_names)
messages.append({"role": "system", "content": system_prompt})
# History
messages.extend(history)
# Current message
messages.append({"role": "user", "content": current_message})
return messages
def add_tool_result(
self,
messages: list[dict[str, Any]],
tool_call_id: str,
tool_name: str,
result: str
) -> list[dict[str, Any]]:
"""
Add a tool result to the message list.
Args:
messages: Current message list.
tool_call_id: ID of the tool call.
tool_name: Name of the tool.
result: Tool execution result.
Returns:
Updated message list.
"""
messages.append({
"role": "tool",
"tool_call_id": tool_call_id,
"name": tool_name,
"content": result
})
return messages
def add_assistant_message(
self,
messages: list[dict[str, Any]],
content: str | None,
tool_calls: list[dict[str, Any]] | None = None
) -> list[dict[str, Any]]:
"""
Add an assistant message to the message list.
Args:
messages: Current message list.
content: Message content.
tool_calls: Optional tool calls.
Returns:
Updated message list.
"""
msg: dict[str, Any] = {"role": "assistant"}
if content:
msg["content"] = content
if tool_calls:
msg["tool_calls"] = tool_calls
messages.append(msg)
return messages

213
nanobot/agent/loop.py Normal file
View File

@@ -0,0 +1,213 @@
"""Agent loop: the core processing engine."""
import asyncio
import json
from pathlib import Path
from typing import Any
from loguru import logger
from nanobot.bus.events import InboundMessage, OutboundMessage
from nanobot.bus.queue import MessageBus
from nanobot.providers.base import LLMProvider
from nanobot.agent.context import ContextBuilder
from nanobot.agent.tools.registry import ToolRegistry
from nanobot.agent.tools.filesystem import ReadFileTool, WriteFileTool, EditFileTool, ListDirTool
from nanobot.agent.tools.shell import ExecTool
from nanobot.agent.tools.web import WebSearchTool, WebFetchTool
from nanobot.agent.tools.message import MessageTool
from nanobot.session.manager import SessionManager
class AgentLoop:
"""
The agent loop is the core processing engine.
It:
1. Receives messages from the bus
2. Builds context with history, memory, skills
3. Calls the LLM
4. Executes tool calls
5. Sends responses back
"""
def __init__(
self,
bus: MessageBus,
provider: LLMProvider,
workspace: Path,
model: str | None = None,
max_iterations: int = 20,
brave_api_key: str | None = None
):
self.bus = bus
self.provider = provider
self.workspace = workspace
self.model = model or provider.get_default_model()
self.max_iterations = max_iterations
self.brave_api_key = brave_api_key
self.context = ContextBuilder(workspace)
self.sessions = SessionManager(workspace)
self.tools = ToolRegistry()
self._running = False
self._register_default_tools()
def _register_default_tools(self) -> None:
"""Register the default set of tools."""
# File tools
self.tools.register(ReadFileTool())
self.tools.register(WriteFileTool())
self.tools.register(EditFileTool())
self.tools.register(ListDirTool())
# Shell tool
self.tools.register(ExecTool(working_dir=str(self.workspace)))
# Web tools
self.tools.register(WebSearchTool(api_key=self.brave_api_key))
self.tools.register(WebFetchTool())
# Message tool
message_tool = MessageTool(send_callback=self.bus.publish_outbound)
self.tools.register(message_tool)
async def run(self) -> None:
"""Run the agent loop, processing messages from the bus."""
self._running = True
logger.info("Agent loop started")
while self._running:
try:
# Wait for next message
msg = await asyncio.wait_for(
self.bus.consume_inbound(),
timeout=1.0
)
# Process it
try:
response = await self._process_message(msg)
if response:
await self.bus.publish_outbound(response)
except Exception as e:
logger.error(f"Error processing message: {e}")
# Send error response
await self.bus.publish_outbound(OutboundMessage(
channel=msg.channel,
chat_id=msg.chat_id,
content=f"Sorry, I encountered an error: {str(e)}"
))
except asyncio.TimeoutError:
continue
def stop(self) -> None:
"""Stop the agent loop."""
self._running = False
logger.info("Agent loop stopping")
async def _process_message(self, msg: InboundMessage) -> OutboundMessage | None:
"""
Process a single inbound message.
Args:
msg: The inbound message to process.
Returns:
The response message, or None if no response needed.
"""
logger.info(f"Processing message from {msg.channel}:{msg.sender_id}")
# Get or create session
session = self.sessions.get_or_create(msg.session_key)
# Update message tool context
message_tool = self.tools.get("message")
if isinstance(message_tool, MessageTool):
message_tool.set_context(msg.channel, msg.chat_id)
# Build initial messages (use get_history for LLM-formatted messages)
messages = self.context.build_messages(
history=session.get_history(),
current_message=msg.content
)
# Agent loop
iteration = 0
final_content = None
while iteration < self.max_iterations:
iteration += 1
# Call LLM
response = await self.provider.chat(
messages=messages,
tools=self.tools.get_definitions(),
model=self.model
)
# Handle tool calls
if response.has_tool_calls:
# Add assistant message with tool calls
tool_call_dicts = [
{
"id": tc.id,
"type": "function",
"function": {
"name": tc.name,
"arguments": json.dumps(tc.arguments) # Must be JSON string
}
}
for tc in response.tool_calls
]
messages = self.context.add_assistant_message(
messages, response.content, tool_call_dicts
)
# Execute tools
for tool_call in response.tool_calls:
logger.debug(f"Executing tool: {tool_call.name}")
result = await self.tools.execute(tool_call.name, tool_call.arguments)
messages = self.context.add_tool_result(
messages, tool_call.id, tool_call.name, result
)
else:
# No tool calls, we're done
final_content = response.content
break
if final_content is None:
final_content = "I've completed processing but have no response to give."
# Save to session
session.add_message("user", msg.content)
session.add_message("assistant", final_content)
self.sessions.save(session)
return OutboundMessage(
channel=msg.channel,
chat_id=msg.chat_id,
content=final_content
)
async def process_direct(self, content: str, session_key: str = "cli:direct") -> str:
"""
Process a message directly (for CLI usage).
Args:
content: The message content.
session_key: Session identifier.
Returns:
The agent's response.
"""
msg = InboundMessage(
channel="cli",
sender_id="user",
chat_id="direct",
content=content
)
response = await self._process_message(msg)
return response.content if response else ""

110
nanobot/agent/memory.py Normal file
View File

@@ -0,0 +1,110 @@
"""Memory system for persistent agent memory."""
from pathlib import Path
from datetime import datetime
from nanobot.utils.helpers import ensure_dir, today_date
class MemoryStore:
"""
Memory system for the agent.
Supports daily notes (memory/YYYY-MM-DD.md) and long-term memory (MEMORY.md).
Compatible with clawbot memory format.
"""
def __init__(self, workspace: Path):
self.workspace = workspace
self.memory_dir = ensure_dir(workspace / "memory")
self.memory_file = self.memory_dir / "MEMORY.md"
def get_today_file(self) -> Path:
"""Get path to today's memory file."""
return self.memory_dir / f"{today_date()}.md"
def read_today(self) -> str:
"""Read today's memory notes."""
today_file = self.get_today_file()
if today_file.exists():
return today_file.read_text(encoding="utf-8")
return ""
def append_today(self, content: str) -> None:
"""Append content to today's memory notes."""
today_file = self.get_today_file()
if today_file.exists():
existing = today_file.read_text(encoding="utf-8")
content = existing + "\n" + content
else:
# Add header for new day
header = f"# {today_date()}\n\n"
content = header + content
today_file.write_text(content, encoding="utf-8")
def read_long_term(self) -> str:
"""Read long-term memory (MEMORY.md)."""
if self.memory_file.exists():
return self.memory_file.read_text(encoding="utf-8")
return ""
def write_long_term(self, content: str) -> None:
"""Write to long-term memory (MEMORY.md)."""
self.memory_file.write_text(content, encoding="utf-8")
def get_recent_memories(self, days: int = 7) -> str:
"""
Get memories from the last N days.
Args:
days: Number of days to look back.
Returns:
Combined memory content.
"""
from datetime import timedelta
memories = []
today = datetime.now().date()
for i in range(days):
date = today - timedelta(days=i)
date_str = date.strftime("%Y-%m-%d")
file_path = self.memory_dir / f"{date_str}.md"
if file_path.exists():
content = file_path.read_text(encoding="utf-8")
memories.append(content)
return "\n\n---\n\n".join(memories)
def list_memory_files(self) -> list[Path]:
"""List all memory files sorted by date (newest first)."""
if not self.memory_dir.exists():
return []
files = list(self.memory_dir.glob("????-??-??.md"))
return sorted(files, reverse=True)
def get_memory_context(self) -> str:
"""
Get memory context for the agent.
Returns:
Formatted memory context including long-term and recent memories.
"""
parts = []
# Long-term memory
long_term = self.read_long_term()
if long_term:
parts.append("## Long-term Memory\n" + long_term)
# Today's notes
today = self.read_today()
if today:
parts.append("## Today's Notes\n" + today)
return "\n\n".join(parts) if parts else ""

228
nanobot/agent/skills.py Normal file
View File

@@ -0,0 +1,228 @@
"""Skills loader for agent capabilities."""
import json
import os
import re
import shutil
from pathlib import Path
# Default builtin skills directory (relative to this file)
BUILTIN_SKILLS_DIR = Path(__file__).parent.parent / "skills"
class SkillsLoader:
"""
Loader for agent skills.
Skills are markdown files (SKILL.md) that teach the agent how to use
specific tools or perform certain tasks.
"""
def __init__(self, workspace: Path, builtin_skills_dir: Path | None = None):
self.workspace = workspace
self.workspace_skills = workspace / "skills"
self.builtin_skills = builtin_skills_dir or BUILTIN_SKILLS_DIR
def list_skills(self, filter_unavailable: bool = True) -> list[dict[str, str]]:
"""
List all available skills.
Args:
filter_unavailable: If True, filter out skills with unmet requirements.
Returns:
List of skill info dicts with 'name', 'path', 'source'.
"""
skills = []
# Workspace skills (highest priority)
if self.workspace_skills.exists():
for skill_dir in self.workspace_skills.iterdir():
if skill_dir.is_dir():
skill_file = skill_dir / "SKILL.md"
if skill_file.exists():
skills.append({"name": skill_dir.name, "path": str(skill_file), "source": "workspace"})
# Built-in skills
if self.builtin_skills and self.builtin_skills.exists():
for skill_dir in self.builtin_skills.iterdir():
if skill_dir.is_dir():
skill_file = skill_dir / "SKILL.md"
if skill_file.exists() and not any(s["name"] == skill_dir.name for s in skills):
skills.append({"name": skill_dir.name, "path": str(skill_file), "source": "builtin"})
# Filter by requirements
if filter_unavailable:
return [s for s in skills if self._check_requirements(self._get_ocmeta(s["name"]))]
return skills
def load_skill(self, name: str) -> str | None:
"""
Load a skill by name.
Args:
name: Skill name (directory name).
Returns:
Skill content or None if not found.
"""
# Check workspace first
workspace_skill = self.workspace_skills / name / "SKILL.md"
if workspace_skill.exists():
return workspace_skill.read_text(encoding="utf-8")
# Check built-in
if self.builtin_skills:
builtin_skill = self.builtin_skills / name / "SKILL.md"
if builtin_skill.exists():
return builtin_skill.read_text(encoding="utf-8")
return None
def load_skills_for_context(self, skill_names: list[str]) -> str:
"""
Load specific skills for inclusion in agent context.
Args:
skill_names: List of skill names to load.
Returns:
Formatted skills content.
"""
parts = []
for name in skill_names:
content = self.load_skill(name)
if content:
content = self._strip_frontmatter(content)
parts.append(f"### Skill: {name}\n\n{content}")
return "\n\n---\n\n".join(parts) if parts else ""
def build_skills_summary(self) -> str:
"""
Build a summary of all skills (name, description, path, availability).
This is used for progressive loading - the agent can read the full
skill content using read_file when needed.
Returns:
XML-formatted skills summary.
"""
all_skills = self.list_skills(filter_unavailable=False)
if not all_skills:
return ""
def escape_xml(s: str) -> str:
return s.replace("&", "&amp;").replace("<", "&lt;").replace(">", "&gt;")
lines = ["<skills>"]
for s in all_skills:
name = escape_xml(s["name"])
path = s["path"]
desc = escape_xml(self._get_skill_description(s["name"]))
ocmeta = self._get_ocmeta(s["name"])
available = self._check_requirements(ocmeta)
lines.append(f" <skill available=\"{str(available).lower()}\">")
lines.append(f" <name>{name}</name>")
lines.append(f" <description>{desc}</description>")
lines.append(f" <location>{path}</location>")
# Show missing requirements for unavailable skills
if not available:
missing = self._get_missing_requirements(ocmeta)
if missing:
lines.append(f" <requires>{escape_xml(missing)}</requires>")
lines.append(f" </skill>")
lines.append("</skills>")
return "\n".join(lines)
def _get_missing_requirements(self, ocmeta: dict) -> str:
"""Get a description of missing requirements."""
missing = []
requires = ocmeta.get("requires", {})
for b in requires.get("bins", []):
if not shutil.which(b):
missing.append(f"CLI: {b}")
for env in requires.get("env", []):
if not os.environ.get(env):
missing.append(f"ENV: {env}")
return ", ".join(missing)
def _get_skill_description(self, name: str) -> str:
"""Get the description of a skill from its frontmatter."""
meta = self.get_skill_metadata(name)
if meta and meta.get("description"):
return meta["description"]
return name # Fallback to skill name
def _strip_frontmatter(self, content: str) -> str:
"""Remove YAML frontmatter from markdown content."""
if content.startswith("---"):
match = re.match(r"^---\n.*?\n---\n", content, re.DOTALL)
if match:
return content[match.end():].strip()
return content
def _parse_openclaw_metadata(self, raw: str) -> dict:
"""Parse openclaw metadata JSON from frontmatter."""
try:
data = json.loads(raw)
return data.get("openclaw", {}) if isinstance(data, dict) else {}
except (json.JSONDecodeError, TypeError):
return {}
def _check_requirements(self, ocmeta: dict) -> bool:
"""Check if skill requirements are met (bins, env vars)."""
requires = ocmeta.get("requires", {})
for b in requires.get("bins", []):
if not shutil.which(b):
return False
for env in requires.get("env", []):
if not os.environ.get(env):
return False
return True
def _get_ocmeta(self, name: str) -> dict:
"""Get openclaw metadata for a skill (cached in frontmatter)."""
meta = self.get_skill_metadata(name) or {}
return self._parse_openclaw_metadata(meta.get("metadata", ""))
def get_always_skills(self) -> list[str]:
"""Get skills marked as always=true that meet requirements."""
result = []
for s in self.list_skills(filter_unavailable=True):
meta = self.get_skill_metadata(s["name"]) or {}
ocmeta = self._parse_openclaw_metadata(meta.get("metadata", ""))
if ocmeta.get("always") or meta.get("always"):
result.append(s["name"])
return result
def get_skill_metadata(self, name: str) -> dict | None:
"""
Get metadata from a skill's frontmatter.
Args:
name: Skill name.
Returns:
Metadata dict or None.
"""
content = self.load_skill(name)
if not content:
return None
if content.startswith("---"):
match = re.match(r"^---\n(.*?)\n---", content, re.DOTALL)
if match:
# Simple YAML parsing
metadata = {}
for line in match.group(1).split("\n"):
if ":" in line:
key, value = line.split(":", 1)
metadata[key.strip()] = value.strip().strip('"\'')
return metadata
return None

View File

@@ -0,0 +1,6 @@
"""Agent tools module."""
from nanobot.agent.tools.base import Tool
from nanobot.agent.tools.registry import ToolRegistry
__all__ = ["Tool", "ToolRegistry"]

View File

@@ -0,0 +1,55 @@
"""Base class for agent tools."""
from abc import ABC, abstractmethod
from typing import Any
class Tool(ABC):
"""
Abstract base class for agent tools.
Tools are capabilities that the agent can use to interact with
the environment, such as reading files, executing commands, etc.
"""
@property
@abstractmethod
def name(self) -> str:
"""Tool name used in function calls."""
pass
@property
@abstractmethod
def description(self) -> str:
"""Description of what the tool does."""
pass
@property
@abstractmethod
def parameters(self) -> dict[str, Any]:
"""JSON Schema for tool parameters."""
pass
@abstractmethod
async def execute(self, **kwargs: Any) -> str:
"""
Execute the tool with given parameters.
Args:
**kwargs: Tool-specific parameters.
Returns:
String result of the tool execution.
"""
pass
def to_schema(self) -> dict[str, Any]:
"""Convert tool to OpenAI function schema format."""
return {
"type": "function",
"function": {
"name": self.name,
"description": self.description,
"parameters": self.parameters,
}
}

View File

@@ -0,0 +1,191 @@
"""File system tools: read, write, edit."""
from pathlib import Path
from typing import Any
from nanobot.agent.tools.base import Tool
class ReadFileTool(Tool):
"""Tool to read file contents."""
@property
def name(self) -> str:
return "read_file"
@property
def description(self) -> str:
return "Read the contents of a file at the given path."
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"path": {
"type": "string",
"description": "The file path to read"
}
},
"required": ["path"]
}
async def execute(self, path: str, **kwargs: Any) -> str:
try:
file_path = Path(path).expanduser()
if not file_path.exists():
return f"Error: File not found: {path}"
if not file_path.is_file():
return f"Error: Not a file: {path}"
content = file_path.read_text(encoding="utf-8")
return content
except PermissionError:
return f"Error: Permission denied: {path}"
except Exception as e:
return f"Error reading file: {str(e)}"
class WriteFileTool(Tool):
"""Tool to write content to a file."""
@property
def name(self) -> str:
return "write_file"
@property
def description(self) -> str:
return "Write content to a file at the given path. Creates parent directories if needed."
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"path": {
"type": "string",
"description": "The file path to write to"
},
"content": {
"type": "string",
"description": "The content to write"
}
},
"required": ["path", "content"]
}
async def execute(self, path: str, content: str, **kwargs: Any) -> str:
try:
file_path = Path(path).expanduser()
file_path.parent.mkdir(parents=True, exist_ok=True)
file_path.write_text(content, encoding="utf-8")
return f"Successfully wrote {len(content)} bytes to {path}"
except PermissionError:
return f"Error: Permission denied: {path}"
except Exception as e:
return f"Error writing file: {str(e)}"
class EditFileTool(Tool):
"""Tool to edit a file by replacing text."""
@property
def name(self) -> str:
return "edit_file"
@property
def description(self) -> str:
return "Edit a file by replacing old_text with new_text. The old_text must exist exactly in the file."
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"path": {
"type": "string",
"description": "The file path to edit"
},
"old_text": {
"type": "string",
"description": "The exact text to find and replace"
},
"new_text": {
"type": "string",
"description": "The text to replace with"
}
},
"required": ["path", "old_text", "new_text"]
}
async def execute(self, path: str, old_text: str, new_text: str, **kwargs: Any) -> str:
try:
file_path = Path(path).expanduser()
if not file_path.exists():
return f"Error: File not found: {path}"
content = file_path.read_text(encoding="utf-8")
if old_text not in content:
return f"Error: old_text not found in file. Make sure it matches exactly."
# Count occurrences
count = content.count(old_text)
if count > 1:
return f"Warning: old_text appears {count} times. Please provide more context to make it unique."
new_content = content.replace(old_text, new_text, 1)
file_path.write_text(new_content, encoding="utf-8")
return f"Successfully edited {path}"
except PermissionError:
return f"Error: Permission denied: {path}"
except Exception as e:
return f"Error editing file: {str(e)}"
class ListDirTool(Tool):
"""Tool to list directory contents."""
@property
def name(self) -> str:
return "list_dir"
@property
def description(self) -> str:
return "List the contents of a directory."
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"path": {
"type": "string",
"description": "The directory path to list"
}
},
"required": ["path"]
}
async def execute(self, path: str, **kwargs: Any) -> str:
try:
dir_path = Path(path).expanduser()
if not dir_path.exists():
return f"Error: Directory not found: {path}"
if not dir_path.is_dir():
return f"Error: Not a directory: {path}"
items = []
for item in sorted(dir_path.iterdir()):
prefix = "📁 " if item.is_dir() else "📄 "
items.append(f"{prefix}{item.name}")
if not items:
return f"Directory {path} is empty"
return "\n".join(items)
except PermissionError:
return f"Error: Permission denied: {path}"
except Exception as e:
return f"Error listing directory: {str(e)}"

View File

@@ -0,0 +1,86 @@
"""Message tool for sending messages to users."""
from typing import Any, Callable, Awaitable
from nanobot.agent.tools.base import Tool
from nanobot.bus.events import OutboundMessage
class MessageTool(Tool):
"""Tool to send messages to users on chat channels."""
def __init__(
self,
send_callback: Callable[[OutboundMessage], Awaitable[None]] | None = None,
default_channel: str = "",
default_chat_id: str = ""
):
self._send_callback = send_callback
self._default_channel = default_channel
self._default_chat_id = default_chat_id
def set_context(self, channel: str, chat_id: str) -> None:
"""Set the current message context."""
self._default_channel = channel
self._default_chat_id = chat_id
def set_send_callback(self, callback: Callable[[OutboundMessage], Awaitable[None]]) -> None:
"""Set the callback for sending messages."""
self._send_callback = callback
@property
def name(self) -> str:
return "message"
@property
def description(self) -> str:
return "Send a message to the user. Use this when you want to communicate something."
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"content": {
"type": "string",
"description": "The message content to send"
},
"channel": {
"type": "string",
"description": "Optional: target channel (telegram, discord, etc.)"
},
"chat_id": {
"type": "string",
"description": "Optional: target chat/user ID"
}
},
"required": ["content"]
}
async def execute(
self,
content: str,
channel: str | None = None,
chat_id: str | None = None,
**kwargs: Any
) -> str:
channel = channel or self._default_channel
chat_id = chat_id or self._default_chat_id
if not channel or not chat_id:
return "Error: No target channel/chat specified"
if not self._send_callback:
return "Error: Message sending not configured"
msg = OutboundMessage(
channel=channel,
chat_id=chat_id,
content=content
)
try:
await self._send_callback(msg)
return f"Message sent to {channel}:{chat_id}"
except Exception as e:
return f"Error sending message: {str(e)}"

View File

@@ -0,0 +1,70 @@
"""Tool registry for dynamic tool management."""
from typing import Any
from nanobot.agent.tools.base import Tool
class ToolRegistry:
"""
Registry for agent tools.
Allows dynamic registration and execution of tools.
"""
def __init__(self):
self._tools: dict[str, Tool] = {}
def register(self, tool: Tool) -> None:
"""Register a tool."""
self._tools[tool.name] = tool
def unregister(self, name: str) -> None:
"""Unregister a tool by name."""
self._tools.pop(name, None)
def get(self, name: str) -> Tool | None:
"""Get a tool by name."""
return self._tools.get(name)
def has(self, name: str) -> bool:
"""Check if a tool is registered."""
return name in self._tools
def get_definitions(self) -> list[dict[str, Any]]:
"""Get all tool definitions in OpenAI format."""
return [tool.to_schema() for tool in self._tools.values()]
async def execute(self, name: str, params: dict[str, Any]) -> str:
"""
Execute a tool by name with given parameters.
Args:
name: Tool name.
params: Tool parameters.
Returns:
Tool execution result as string.
Raises:
KeyError: If tool not found.
"""
tool = self._tools.get(name)
if not tool:
return f"Error: Tool '{name}' not found"
try:
return await tool.execute(**params)
except Exception as e:
return f"Error executing {name}: {str(e)}"
@property
def tool_names(self) -> list[str]:
"""Get list of registered tool names."""
return list(self._tools.keys())
def __len__(self) -> int:
return len(self._tools)
def __contains__(self, name: str) -> bool:
return name in self._tools

View File

@@ -0,0 +1,85 @@
"""Shell execution tool."""
import asyncio
import os
from typing import Any
from nanobot.agent.tools.base import Tool
class ExecTool(Tool):
"""Tool to execute shell commands."""
def __init__(self, timeout: int = 60, working_dir: str | None = None):
self.timeout = timeout
self.working_dir = working_dir
@property
def name(self) -> str:
return "exec"
@property
def description(self) -> str:
return "Execute a shell command and return its output. Use with caution."
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"command": {
"type": "string",
"description": "The shell command to execute"
},
"working_dir": {
"type": "string",
"description": "Optional working directory for the command"
}
},
"required": ["command"]
}
async def execute(self, command: str, working_dir: str | None = None, **kwargs: Any) -> str:
cwd = working_dir or self.working_dir or os.getcwd()
try:
process = await asyncio.create_subprocess_shell(
command,
stdout=asyncio.subprocess.PIPE,
stderr=asyncio.subprocess.PIPE,
cwd=cwd,
)
try:
stdout, stderr = await asyncio.wait_for(
process.communicate(),
timeout=self.timeout
)
except asyncio.TimeoutError:
process.kill()
return f"Error: Command timed out after {self.timeout} seconds"
output_parts = []
if stdout:
output_parts.append(stdout.decode("utf-8", errors="replace"))
if stderr:
stderr_text = stderr.decode("utf-8", errors="replace")
if stderr_text.strip():
output_parts.append(f"STDERR:\n{stderr_text}")
if process.returncode != 0:
output_parts.append(f"\nExit code: {process.returncode}")
result = "\n".join(output_parts) if output_parts else "(no output)"
# Truncate very long output
max_len = 10000
if len(result) > max_len:
result = result[:max_len] + f"\n... (truncated, {len(result) - max_len} more chars)"
return result
except Exception as e:
return f"Error executing command: {str(e)}"

139
nanobot/agent/tools/web.py Normal file
View File

@@ -0,0 +1,139 @@
"""Web tools: web_search and web_fetch."""
import html
import json
import os
import re
from typing import Any
import httpx
from nanobot.agent.tools.base import Tool
# Shared constants
USER_AGENT = "Mozilla/5.0 (Macintosh; Intel Mac OS X 14_7_2) AppleWebKit/537.36"
def _strip_tags(text: str) -> str:
"""Remove HTML tags and decode entities."""
text = re.sub(r'<script[\s\S]*?</script>', '', text, flags=re.I)
text = re.sub(r'<style[\s\S]*?</style>', '', text, flags=re.I)
text = re.sub(r'<[^>]+>', '', text)
return html.unescape(text).strip()
def _normalize(text: str) -> str:
"""Normalize whitespace."""
text = re.sub(r'[ \t]+', ' ', text)
return re.sub(r'\n{3,}', '\n\n', text).strip()
class WebSearchTool(Tool):
"""Search the web using Brave Search API."""
name = "web_search"
description = "Search the web. Returns titles, URLs, and snippets."
parameters = {
"type": "object",
"properties": {
"query": {"type": "string", "description": "Search query"},
"count": {"type": "integer", "description": "Results (1-10)", "minimum": 1, "maximum": 10}
},
"required": ["query"]
}
def __init__(self, api_key: str | None = None, max_results: int = 5):
self.api_key = api_key or os.environ.get("BRAVE_API_KEY", "")
self.max_results = max_results
async def execute(self, query: str, count: int | None = None, **kwargs: Any) -> str:
if not self.api_key:
return "Error: BRAVE_API_KEY not configured"
try:
n = min(max(count or self.max_results, 1), 10)
async with httpx.AsyncClient() as client:
r = await client.get(
"https://api.search.brave.com/res/v1/web/search",
params={"q": query, "count": n},
headers={"Accept": "application/json", "X-Subscription-Token": self.api_key},
timeout=10.0
)
r.raise_for_status()
results = r.json().get("web", {}).get("results", [])
if not results:
return f"No results for: {query}"
lines = [f"Results for: {query}\n"]
for i, item in enumerate(results[:n], 1):
lines.append(f"{i}. {item.get('title', '')}\n {item.get('url', '')}")
if desc := item.get("description"):
lines.append(f" {desc}")
return "\n".join(lines)
except Exception as e:
return f"Error: {e}"
class WebFetchTool(Tool):
"""Fetch and extract content from a URL using Readability."""
name = "web_fetch"
description = "Fetch URL and extract readable content (HTML → markdown/text)."
parameters = {
"type": "object",
"properties": {
"url": {"type": "string", "description": "URL to fetch"},
"extractMode": {"type": "string", "enum": ["markdown", "text"], "default": "markdown"},
"maxChars": {"type": "integer", "minimum": 100}
},
"required": ["url"]
}
def __init__(self, max_chars: int = 50000):
self.max_chars = max_chars
async def execute(self, url: str, extractMode: str = "markdown", maxChars: int | None = None, **kwargs: Any) -> str:
from readability import Document
max_chars = maxChars or self.max_chars
try:
async with httpx.AsyncClient() as client:
r = await client.get(url, headers={"User-Agent": USER_AGENT}, follow_redirects=True, timeout=30.0)
r.raise_for_status()
ctype = r.headers.get("content-type", "")
# JSON
if "application/json" in ctype:
text, extractor = json.dumps(r.json(), indent=2), "json"
# HTML
elif "text/html" in ctype or r.text[:256].lower().startswith(("<!doctype", "<html")):
doc = Document(r.text)
content = self._to_markdown(doc.summary()) if extractMode == "markdown" else _strip_tags(doc.summary())
text = f"# {doc.title()}\n\n{content}" if doc.title() else content
extractor = "readability"
else:
text, extractor = r.text, "raw"
truncated = len(text) > max_chars
if truncated:
text = text[:max_chars]
return json.dumps({"url": url, "finalUrl": str(r.url), "status": r.status_code,
"extractor": extractor, "truncated": truncated, "length": len(text), "text": text})
except Exception as e:
return json.dumps({"error": str(e), "url": url})
def _to_markdown(self, html: str) -> str:
"""Convert HTML to markdown."""
# Convert links, headings, lists before stripping tags
text = re.sub(r'<a\s+[^>]*href=["\']([^"\']+)["\'][^>]*>([\s\S]*?)</a>',
lambda m: f'[{_strip_tags(m[2])}]({m[1]})', html, flags=re.I)
text = re.sub(r'<h([1-6])[^>]*>([\s\S]*?)</h\1>',
lambda m: f'\n{"#" * int(m[1])} {_strip_tags(m[2])}\n', text, flags=re.I)
text = re.sub(r'<li[^>]*>([\s\S]*?)</li>', lambda m: f'\n- {_strip_tags(m[1])}', text, flags=re.I)
text = re.sub(r'</(p|div|section|article)>', '\n\n', text, flags=re.I)
text = re.sub(r'<(br|hr)\s*/?>', '\n', text, flags=re.I)
return _normalize(_strip_tags(text))

6
nanobot/bus/__init__.py Normal file
View File

@@ -0,0 +1,6 @@
"""Message bus module for decoupled channel-agent communication."""
from nanobot.bus.events import InboundMessage, OutboundMessage
from nanobot.bus.queue import MessageBus
__all__ = ["MessageBus", "InboundMessage", "OutboundMessage"]

37
nanobot/bus/events.py Normal file
View File

@@ -0,0 +1,37 @@
"""Event types for the message bus."""
from dataclasses import dataclass, field
from datetime import datetime
from typing import Any
@dataclass
class InboundMessage:
"""Message received from a chat channel."""
channel: str # telegram, discord, slack, whatsapp
sender_id: str # User identifier
chat_id: str # Chat/channel identifier
content: str # Message text
timestamp: datetime = field(default_factory=datetime.now)
media: list[str] = field(default_factory=list) # Media URLs
metadata: dict[str, Any] = field(default_factory=dict) # Channel-specific data
@property
def session_key(self) -> str:
"""Unique key for session identification."""
return f"{self.channel}:{self.chat_id}"
@dataclass
class OutboundMessage:
"""Message to send to a chat channel."""
channel: str
chat_id: str
content: str
reply_to: str | None = None
media: list[str] = field(default_factory=list)
metadata: dict[str, Any] = field(default_factory=dict)

81
nanobot/bus/queue.py Normal file
View File

@@ -0,0 +1,81 @@
"""Async message queue for decoupled channel-agent communication."""
import asyncio
from typing import Callable, Awaitable
from loguru import logger
from nanobot.bus.events import InboundMessage, OutboundMessage
class MessageBus:
"""
Async message bus that decouples chat channels from the agent core.
Channels push messages to the inbound queue, and the agent processes
them and pushes responses to the outbound queue.
"""
def __init__(self):
self.inbound: asyncio.Queue[InboundMessage] = asyncio.Queue()
self.outbound: asyncio.Queue[OutboundMessage] = asyncio.Queue()
self._outbound_subscribers: dict[str, list[Callable[[OutboundMessage], Awaitable[None]]]] = {}
self._running = False
async def publish_inbound(self, msg: InboundMessage) -> None:
"""Publish a message from a channel to the agent."""
await self.inbound.put(msg)
async def consume_inbound(self) -> InboundMessage:
"""Consume the next inbound message (blocks until available)."""
return await self.inbound.get()
async def publish_outbound(self, msg: OutboundMessage) -> None:
"""Publish a response from the agent to channels."""
await self.outbound.put(msg)
async def consume_outbound(self) -> OutboundMessage:
"""Consume the next outbound message (blocks until available)."""
return await self.outbound.get()
def subscribe_outbound(
self,
channel: str,
callback: Callable[[OutboundMessage], Awaitable[None]]
) -> None:
"""Subscribe to outbound messages for a specific channel."""
if channel not in self._outbound_subscribers:
self._outbound_subscribers[channel] = []
self._outbound_subscribers[channel].append(callback)
async def dispatch_outbound(self) -> None:
"""
Dispatch outbound messages to subscribed channels.
Run this as a background task.
"""
self._running = True
while self._running:
try:
msg = await asyncio.wait_for(self.outbound.get(), timeout=1.0)
subscribers = self._outbound_subscribers.get(msg.channel, [])
for callback in subscribers:
try:
await callback(msg)
except Exception as e:
logger.error(f"Error dispatching to {msg.channel}: {e}")
except asyncio.TimeoutError:
continue
def stop(self) -> None:
"""Stop the dispatcher loop."""
self._running = False
@property
def inbound_size(self) -> int:
"""Number of pending inbound messages."""
return self.inbound.qsize()
@property
def outbound_size(self) -> int:
"""Number of pending outbound messages."""
return self.outbound.qsize()

View File

@@ -0,0 +1,6 @@
"""Chat channels module with plugin architecture."""
from nanobot.channels.base import BaseChannel
from nanobot.channels.manager import ChannelManager
__all__ = ["BaseChannel", "ChannelManager"]

114
nanobot/channels/base.py Normal file
View File

@@ -0,0 +1,114 @@
"""Base channel interface for chat platforms."""
from abc import ABC, abstractmethod
from typing import Any
from nanobot.bus.events import InboundMessage, OutboundMessage
from nanobot.bus.queue import MessageBus
class BaseChannel(ABC):
"""
Abstract base class for chat channel implementations.
Each channel (Telegram, Discord, etc.) should implement this interface
to integrate with the nanobot message bus.
"""
name: str = "base"
def __init__(self, config: Any, bus: MessageBus):
"""
Initialize the channel.
Args:
config: Channel-specific configuration.
bus: The message bus for communication.
"""
self.config = config
self.bus = bus
self._running = False
@abstractmethod
async def start(self) -> None:
"""
Start the channel and begin listening for messages.
This should be a long-running async task that:
1. Connects to the chat platform
2. Listens for incoming messages
3. Forwards messages to the bus via _handle_message()
"""
pass
@abstractmethod
async def stop(self) -> None:
"""Stop the channel and clean up resources."""
pass
@abstractmethod
async def send(self, msg: OutboundMessage) -> None:
"""
Send a message through this channel.
Args:
msg: The message to send.
"""
pass
def is_allowed(self, sender_id: str) -> bool:
"""
Check if a sender is allowed to use this bot.
Args:
sender_id: The sender's identifier.
Returns:
True if allowed, False otherwise.
"""
allow_list = getattr(self.config, "allow_from", [])
# If no allow list, allow everyone
if not allow_list:
return True
return str(sender_id) in allow_list
async def _handle_message(
self,
sender_id: str,
chat_id: str,
content: str,
media: list[str] | None = None,
metadata: dict[str, Any] | None = None
) -> None:
"""
Handle an incoming message from the chat platform.
This method checks permissions and forwards to the bus.
Args:
sender_id: The sender's identifier.
chat_id: The chat/channel identifier.
content: Message text content.
media: Optional list of media URLs.
metadata: Optional channel-specific metadata.
"""
if not self.is_allowed(sender_id):
return
msg = InboundMessage(
channel=self.name,
sender_id=str(sender_id),
chat_id=str(chat_id),
content=content,
media=media or [],
metadata=metadata or {}
)
await self.bus.publish_inbound(msg)
@property
def is_running(self) -> bool:
"""Check if the channel is running."""
return self._running

137
nanobot/channels/manager.py Normal file
View File

@@ -0,0 +1,137 @@
"""Channel manager for coordinating chat channels."""
import asyncio
from typing import Any
from loguru import logger
from nanobot.bus.events import OutboundMessage
from nanobot.bus.queue import MessageBus
from nanobot.channels.base import BaseChannel
from nanobot.config.schema import Config
class ChannelManager:
"""
Manages chat channels and coordinates message routing.
Responsibilities:
- Initialize enabled channels (Telegram, WhatsApp, etc.)
- Start/stop channels
- Route outbound messages
"""
def __init__(self, config: Config, bus: MessageBus):
self.config = config
self.bus = bus
self.channels: dict[str, BaseChannel] = {}
self._dispatch_task: asyncio.Task | None = None
self._init_channels()
def _init_channels(self) -> None:
"""Initialize channels based on config."""
# Telegram channel
if self.config.channels.telegram.enabled:
try:
from nanobot.channels.telegram import TelegramChannel
self.channels["telegram"] = TelegramChannel(
self.config.channels.telegram, self.bus
)
logger.info("Telegram channel enabled")
except ImportError as e:
logger.warning(f"Telegram channel not available: {e}")
# WhatsApp channel
if self.config.channels.whatsapp.enabled:
try:
from nanobot.channels.whatsapp import WhatsAppChannel
self.channels["whatsapp"] = WhatsAppChannel(
self.config.channels.whatsapp, self.bus
)
logger.info("WhatsApp channel enabled")
except ImportError as e:
logger.warning(f"WhatsApp channel not available: {e}")
async def start_all(self) -> None:
"""Start WhatsApp channel and the outbound dispatcher."""
if not self.channels:
logger.warning("No channels enabled")
return
# Start outbound dispatcher
self._dispatch_task = asyncio.create_task(self._dispatch_outbound())
# Start WhatsApp channel
tasks = []
for name, channel in self.channels.items():
logger.info(f"Starting {name} channel...")
tasks.append(asyncio.create_task(channel.start()))
# Wait for all to complete (they should run forever)
await asyncio.gather(*tasks, return_exceptions=True)
async def stop_all(self) -> None:
"""Stop all channels and the dispatcher."""
logger.info("Stopping all channels...")
# Stop dispatcher
if self._dispatch_task:
self._dispatch_task.cancel()
try:
await self._dispatch_task
except asyncio.CancelledError:
pass
# Stop all channels
for name, channel in self.channels.items():
try:
await channel.stop()
logger.info(f"Stopped {name} channel")
except Exception as e:
logger.error(f"Error stopping {name}: {e}")
async def _dispatch_outbound(self) -> None:
"""Dispatch outbound messages to the appropriate channel."""
logger.info("Outbound dispatcher started")
while True:
try:
msg = await asyncio.wait_for(
self.bus.consume_outbound(),
timeout=1.0
)
channel = self.channels.get(msg.channel)
if channel:
try:
await channel.send(msg)
except Exception as e:
logger.error(f"Error sending to {msg.channel}: {e}")
else:
logger.warning(f"Unknown channel: {msg.channel}")
except asyncio.TimeoutError:
continue
except asyncio.CancelledError:
break
def get_channel(self, name: str) -> BaseChannel | None:
"""Get a channel by name."""
return self.channels.get(name)
def get_status(self) -> dict[str, Any]:
"""Get status of all channels."""
return {
name: {
"enabled": True,
"running": channel.is_running
}
for name, channel in self.channels.items()
}
@property
def enabled_channels(self) -> list[str]:
"""Get list of enabled channel names."""
return list(self.channels.keys())

View File

@@ -0,0 +1,212 @@
"""Telegram channel implementation using python-telegram-bot."""
import asyncio
from typing import Any
from loguru import logger
from telegram import Update
from telegram.ext import Application, MessageHandler, filters, ContextTypes
from nanobot.bus.events import OutboundMessage
from nanobot.bus.queue import MessageBus
from nanobot.channels.base import BaseChannel
from nanobot.config.schema import TelegramConfig
class TelegramChannel(BaseChannel):
"""
Telegram channel using long polling.
Simple and reliable - no webhook/public IP needed.
"""
name = "telegram"
def __init__(self, config: TelegramConfig, bus: MessageBus):
super().__init__(config, bus)
self.config: TelegramConfig = config
self._app: Application | None = None
self._chat_ids: dict[str, int] = {} # Map sender_id to chat_id for replies
async def start(self) -> None:
"""Start the Telegram bot with long polling."""
if not self.config.token:
logger.error("Telegram bot token not configured")
return
self._running = True
# Build the application
self._app = (
Application.builder()
.token(self.config.token)
.build()
)
# Add message handler for text, photos, voice, documents
self._app.add_handler(
MessageHandler(
(filters.TEXT | filters.PHOTO | filters.VOICE | filters.AUDIO | filters.Document.ALL)
& ~filters.COMMAND,
self._on_message
)
)
# Add /start command handler
from telegram.ext import CommandHandler
self._app.add_handler(CommandHandler("start", self._on_start))
logger.info("Starting Telegram bot (polling mode)...")
# Initialize and start polling
await self._app.initialize()
await self._app.start()
# Get bot info
bot_info = await self._app.bot.get_me()
logger.info(f"Telegram bot @{bot_info.username} connected")
# Start polling (this runs until stopped)
await self._app.updater.start_polling(
allowed_updates=["message"],
drop_pending_updates=True # Ignore old messages on startup
)
# Keep running until stopped
while self._running:
await asyncio.sleep(1)
async def stop(self) -> None:
"""Stop the Telegram bot."""
self._running = False
if self._app:
logger.info("Stopping Telegram bot...")
await self._app.updater.stop()
await self._app.stop()
await self._app.shutdown()
self._app = None
async def send(self, msg: OutboundMessage) -> None:
"""Send a message through Telegram."""
if not self._app:
logger.warning("Telegram bot not running")
return
try:
# chat_id should be the Telegram chat ID (integer)
chat_id = int(msg.chat_id)
await self._app.bot.send_message(
chat_id=chat_id,
text=msg.content
)
except ValueError:
logger.error(f"Invalid chat_id: {msg.chat_id}")
except Exception as e:
logger.error(f"Error sending Telegram message: {e}")
async def _on_start(self, update: Update, context: ContextTypes.DEFAULT_TYPE) -> None:
"""Handle /start command."""
if not update.message or not update.effective_user:
return
user = update.effective_user
await update.message.reply_text(
f"👋 Hi {user.first_name}! I'm nanobot.\n\n"
"Send me a message and I'll respond!"
)
async def _on_message(self, update: Update, context: ContextTypes.DEFAULT_TYPE) -> None:
"""Handle incoming messages (text, photos, voice, documents)."""
if not update.message or not update.effective_user:
return
message = update.message
user = update.effective_user
chat_id = message.chat_id
# Get sender identifier (prefer username, fallback to user_id)
sender_id = str(user.username or user.id)
# Store chat_id for replies
self._chat_ids[sender_id] = chat_id
# Build content from text and/or media
content_parts = []
media_paths = []
# Text content
if message.text:
content_parts.append(message.text)
if message.caption:
content_parts.append(message.caption)
# Handle media files
media_file = None
media_type = None
if message.photo:
media_file = message.photo[-1] # Largest photo
media_type = "image"
elif message.voice:
media_file = message.voice
media_type = "voice"
elif message.audio:
media_file = message.audio
media_type = "audio"
elif message.document:
media_file = message.document
media_type = "file"
# Download media if present
if media_file and self._app:
try:
file = await self._app.bot.get_file(media_file.file_id)
ext = self._get_extension(media_type, getattr(media_file, 'mime_type', None))
# Save to workspace/media/
from pathlib import Path
media_dir = Path.home() / ".nanobot" / "media"
media_dir.mkdir(parents=True, exist_ok=True)
file_path = media_dir / f"{media_file.file_id[:16]}{ext}"
await file.download_to_drive(str(file_path))
media_paths.append(str(file_path))
content_parts.append(f"[{media_type}: {file_path}]")
logger.debug(f"Downloaded {media_type} to {file_path}")
except Exception as e:
logger.error(f"Failed to download media: {e}")
content_parts.append(f"[{media_type}: download failed]")
content = "\n".join(content_parts) if content_parts else "[empty message]"
logger.debug(f"Telegram message from {sender_id}: {content[:50]}...")
# Forward to the message bus
await self._handle_message(
sender_id=sender_id,
chat_id=str(chat_id),
content=content,
media=media_paths,
metadata={
"message_id": message.message_id,
"user_id": user.id,
"username": user.username,
"first_name": user.first_name,
"is_group": message.chat.type != "private"
}
)
def _get_extension(self, media_type: str, mime_type: str | None) -> str:
"""Get file extension based on media type."""
if mime_type:
ext_map = {
"image/jpeg": ".jpg", "image/png": ".png", "image/gif": ".gif",
"audio/ogg": ".ogg", "audio/mpeg": ".mp3", "audio/mp4": ".m4a",
}
if mime_type in ext_map:
return ext_map[mime_type]
type_map = {"image": ".jpg", "voice": ".ogg", "audio": ".mp3", "file": ""}
return type_map.get(media_type, "")

View File

@@ -0,0 +1,136 @@
"""WhatsApp channel implementation using Node.js bridge."""
import asyncio
import json
from typing import Any
from loguru import logger
from nanobot.bus.events import OutboundMessage
from nanobot.bus.queue import MessageBus
from nanobot.channels.base import BaseChannel
from nanobot.config.schema import WhatsAppConfig
class WhatsAppChannel(BaseChannel):
"""
WhatsApp channel that connects to a Node.js bridge.
The bridge uses @whiskeysockets/baileys to handle the WhatsApp Web protocol.
Communication between Python and Node.js is via WebSocket.
"""
name = "whatsapp"
def __init__(self, config: WhatsAppConfig, bus: MessageBus):
super().__init__(config, bus)
self.config: WhatsAppConfig = config
self._ws = None
self._connected = False
async def start(self) -> None:
"""Start the WhatsApp channel by connecting to the bridge."""
import websockets
bridge_url = self.config.bridge_url
logger.info(f"Connecting to WhatsApp bridge at {bridge_url}...")
self._running = True
while self._running:
try:
async with websockets.connect(bridge_url) as ws:
self._ws = ws
self._connected = True
logger.info("Connected to WhatsApp bridge")
# Listen for messages
async for message in ws:
try:
await self._handle_bridge_message(message)
except Exception as e:
logger.error(f"Error handling bridge message: {e}")
except asyncio.CancelledError:
break
except Exception as e:
self._connected = False
self._ws = None
logger.warning(f"WhatsApp bridge connection error: {e}")
if self._running:
logger.info("Reconnecting in 5 seconds...")
await asyncio.sleep(5)
async def stop(self) -> None:
"""Stop the WhatsApp channel."""
self._running = False
self._connected = False
if self._ws:
await self._ws.close()
self._ws = None
async def send(self, msg: OutboundMessage) -> None:
"""Send a message through WhatsApp."""
if not self._ws or not self._connected:
logger.warning("WhatsApp bridge not connected")
return
try:
payload = {
"type": "send",
"to": msg.chat_id,
"text": msg.content
}
await self._ws.send(json.dumps(payload))
except Exception as e:
logger.error(f"Error sending WhatsApp message: {e}")
async def _handle_bridge_message(self, raw: str) -> None:
"""Handle a message from the bridge."""
try:
data = json.loads(raw)
except json.JSONDecodeError:
logger.warning(f"Invalid JSON from bridge: {raw[:100]}")
return
msg_type = data.get("type")
if msg_type == "message":
# Incoming message from WhatsApp
sender = data.get("sender", "")
content = data.get("content", "")
# sender is typically: <phone>@s.whatsapp.net
# Extract just the phone number as chat_id
chat_id = sender.split("@")[0] if "@" in sender else sender
await self._handle_message(
sender_id=chat_id,
chat_id=sender, # Use full JID for replies
content=content,
metadata={
"message_id": data.get("id"),
"timestamp": data.get("timestamp"),
"is_group": data.get("isGroup", False)
}
)
elif msg_type == "status":
# Connection status update
status = data.get("status")
logger.info(f"WhatsApp status: {status}")
if status == "connected":
self._connected = True
elif status == "disconnected":
self._connected = False
elif msg_type == "qr":
# QR code for authentication
logger.info("Scan QR code in the bridge terminal to connect WhatsApp")
elif msg_type == "error":
logger.error(f"WhatsApp bridge error: {data.get('error')}")

1
nanobot/cli/__init__.py Normal file
View File

@@ -0,0 +1 @@
"""CLI module for nanobot."""

634
nanobot/cli/commands.py Normal file
View File

@@ -0,0 +1,634 @@
"""CLI commands for nanobot."""
import asyncio
from pathlib import Path
import typer
from rich.console import Console
from rich.table import Table
from nanobot import __version__, __logo__
app = typer.Typer(
name="nanobot",
help=f"{__logo__} nanobot - Personal AI Assistant",
no_args_is_help=True,
)
console = Console()
def version_callback(value: bool):
if value:
console.print(f"{__logo__} nanobot v{__version__}")
raise typer.Exit()
@app.callback()
def main(
version: bool = typer.Option(
None, "--version", "-v", callback=version_callback, is_eager=True
),
):
"""nanobot - Personal AI Assistant."""
pass
# ============================================================================
# Onboard / Setup
# ============================================================================
@app.command()
def onboard():
"""Initialize nanobot configuration and workspace."""
from nanobot.config.loader import get_config_path, save_config
from nanobot.config.schema import Config
from nanobot.utils.helpers import get_workspace_path
config_path = get_config_path()
if config_path.exists():
console.print(f"[yellow]Config already exists at {config_path}[/yellow]")
if not typer.confirm("Overwrite?"):
raise typer.Exit()
# Create default config
config = Config()
save_config(config)
console.print(f"[green]✓[/green] Created config at {config_path}")
# Create workspace
workspace = get_workspace_path()
console.print(f"[green]✓[/green] Created workspace at {workspace}")
# Create default bootstrap files
_create_workspace_templates(workspace)
console.print(f"\n{__logo__} nanobot is ready!")
console.print("\nNext steps:")
console.print(" 1. Add your API key to [cyan]~/.nanobot/config.json[/cyan]")
console.print(" Get one at: https://openrouter.ai/keys")
console.print(" 2. Chat: [cyan]nanobot agent -m \"Hello!\"[/cyan]")
console.print("\n[dim]Want Telegram/WhatsApp? See: https://github.com/HKUDS/nanobot#-chat-apps[/dim]")
def _create_workspace_templates(workspace: Path):
"""Create default workspace template files."""
templates = {
"AGENTS.md": """# Agent Instructions
You are a helpful AI assistant. Be concise, accurate, and friendly.
## Guidelines
- Always explain what you're doing before taking actions
- Ask for clarification when the request is ambiguous
- Use tools to help accomplish tasks
- Remember important information in your memory files
""",
"SOUL.md": """# Soul
I am nanobot, a lightweight AI assistant.
## Personality
- Helpful and friendly
- Concise and to the point
- Curious and eager to learn
## Values
- Accuracy over speed
- User privacy and safety
- Transparency in actions
""",
"USER.md": """# User
Information about the user goes here.
## Preferences
- Communication style: (casual/formal)
- Timezone: (your timezone)
- Language: (your preferred language)
""",
}
for filename, content in templates.items():
file_path = workspace / filename
if not file_path.exists():
file_path.write_text(content)
console.print(f" [dim]Created {filename}[/dim]")
# Create memory directory and MEMORY.md
memory_dir = workspace / "memory"
memory_dir.mkdir(exist_ok=True)
memory_file = memory_dir / "MEMORY.md"
if not memory_file.exists():
memory_file.write_text("""# Long-term Memory
This file stores important information that should persist across sessions.
## User Information
(Important facts about the user)
## Preferences
(User preferences learned over time)
## Important Notes
(Things to remember)
""")
console.print(" [dim]Created memory/MEMORY.md[/dim]")
# ============================================================================
# Gateway / Server
# ============================================================================
@app.command()
def gateway(
port: int = typer.Option(18789, "--port", "-p", help="Gateway port"),
verbose: bool = typer.Option(False, "--verbose", "-v", help="Verbose output"),
):
"""Start the nanobot gateway."""
from nanobot.config.loader import load_config, get_data_dir
from nanobot.bus.queue import MessageBus
from nanobot.providers.litellm_provider import LiteLLMProvider
from nanobot.agent.loop import AgentLoop
from nanobot.channels.manager import ChannelManager
from nanobot.cron.service import CronService
from nanobot.cron.types import CronJob
from nanobot.heartbeat.service import HeartbeatService
if verbose:
import logging
logging.basicConfig(level=logging.DEBUG)
console.print(f"{__logo__} Starting nanobot gateway on port {port}...")
config = load_config()
# Create components
bus = MessageBus()
# Create provider (supports OpenRouter, Anthropic, OpenAI)
api_key = config.get_api_key()
api_base = config.get_api_base()
if not api_key:
console.print("[red]Error: No API key configured.[/red]")
console.print("Set one in ~/.nanobot/config.json under providers.openrouter.apiKey")
raise typer.Exit(1)
provider = LiteLLMProvider(
api_key=api_key,
api_base=api_base,
default_model=config.agents.defaults.model
)
# Create agent
agent = AgentLoop(
bus=bus,
provider=provider,
workspace=config.workspace_path,
model=config.agents.defaults.model,
max_iterations=config.agents.defaults.max_tool_iterations,
brave_api_key=config.tools.web.search.api_key or None
)
# Create cron service
async def on_cron_job(job: CronJob) -> str | None:
"""Execute a cron job through the agent."""
response = await agent.process_direct(
job.payload.message,
session_key=f"cron:{job.id}"
)
# Optionally deliver to channel
if job.payload.deliver and job.payload.to:
from nanobot.bus.events import OutboundMessage
await bus.publish_outbound(OutboundMessage(
channel=job.payload.channel or "whatsapp",
chat_id=job.payload.to,
content=response or ""
))
return response
cron_store_path = get_data_dir() / "cron" / "jobs.json"
cron = CronService(cron_store_path, on_job=on_cron_job)
# Create heartbeat service
async def on_heartbeat(prompt: str) -> str:
"""Execute heartbeat through the agent."""
return await agent.process_direct(prompt, session_key="heartbeat")
heartbeat = HeartbeatService(
workspace=config.workspace_path,
on_heartbeat=on_heartbeat,
interval_s=30 * 60, # 30 minutes
enabled=True
)
# Create channel manager
channels = ChannelManager(config, bus)
if channels.enabled_channels:
console.print(f"[green]✓[/green] Channels enabled: {', '.join(channels.enabled_channels)}")
else:
console.print("[yellow]Warning: No channels enabled[/yellow]")
cron_status = cron.status()
if cron_status["jobs"] > 0:
console.print(f"[green]✓[/green] Cron: {cron_status['jobs']} scheduled jobs")
console.print(f"[green]✓[/green] Heartbeat: every 30m")
async def run():
try:
await cron.start()
await heartbeat.start()
await asyncio.gather(
agent.run(),
channels.start_all(),
)
except KeyboardInterrupt:
console.print("\nShutting down...")
heartbeat.stop()
cron.stop()
agent.stop()
await channels.stop_all()
asyncio.run(run())
# ============================================================================
# Agent Commands
# ============================================================================
@app.command()
def agent(
message: str = typer.Option(None, "--message", "-m", help="Message to send to the agent"),
session_id: str = typer.Option("cli:default", "--session", "-s", help="Session ID"),
):
"""Interact with the agent directly."""
from nanobot.config.loader import load_config
from nanobot.bus.queue import MessageBus
from nanobot.providers.litellm_provider import LiteLLMProvider
from nanobot.agent.loop import AgentLoop
config = load_config()
api_key = config.get_api_key()
api_base = config.get_api_base()
if not api_key:
console.print("[red]Error: No API key configured.[/red]")
raise typer.Exit(1)
bus = MessageBus()
provider = LiteLLMProvider(
api_key=api_key,
api_base=api_base,
default_model=config.agents.defaults.model
)
agent_loop = AgentLoop(
bus=bus,
provider=provider,
workspace=config.workspace_path,
brave_api_key=config.tools.web.search.api_key or None
)
if message:
# Single message mode
async def run_once():
response = await agent_loop.process_direct(message, session_id)
console.print(f"\n{__logo__} {response}")
asyncio.run(run_once())
else:
# Interactive mode
console.print(f"{__logo__} Interactive mode (Ctrl+C to exit)\n")
async def run_interactive():
while True:
try:
user_input = console.input("[bold blue]You:[/bold blue] ")
if not user_input.strip():
continue
response = await agent_loop.process_direct(user_input, session_id)
console.print(f"\n{__logo__} {response}\n")
except KeyboardInterrupt:
console.print("\nGoodbye!")
break
asyncio.run(run_interactive())
# ============================================================================
# Channel Commands
# ============================================================================
channels_app = typer.Typer(help="Manage channels")
app.add_typer(channels_app, name="channels")
@channels_app.command("status")
def channels_status():
"""Show channel status."""
from nanobot.config.loader import load_config
config = load_config()
table = Table(title="Channel Status")
table.add_column("Channel", style="cyan")
table.add_column("Enabled", style="green")
table.add_column("Bridge URL", style="yellow")
wa = config.channels.whatsapp
table.add_row(
"WhatsApp",
"" if wa.enabled else "",
wa.bridge_url
)
console.print(table)
def _get_bridge_dir() -> Path:
"""Get the bridge directory, setting it up if needed."""
import shutil
import subprocess
# User's bridge location
user_bridge = Path.home() / ".nanobot" / "bridge"
# Check if already built
if (user_bridge / "dist" / "index.js").exists():
return user_bridge
# Check for npm
if not shutil.which("npm"):
console.print("[red]npm not found. Please install Node.js >= 18.[/red]")
raise typer.Exit(1)
# Find source bridge: first check package data, then source dir
pkg_bridge = Path(__file__).parent / "bridge" # nanobot/bridge (installed)
src_bridge = Path(__file__).parent.parent.parent / "bridge" # repo root/bridge (dev)
source = None
if (pkg_bridge / "package.json").exists():
source = pkg_bridge
elif (src_bridge / "package.json").exists():
source = src_bridge
if not source:
console.print("[red]Bridge source not found.[/red]")
console.print("Try reinstalling: pip install --force-reinstall nanobot")
raise typer.Exit(1)
console.print(f"{__logo__} Setting up bridge...")
# Copy to user directory
user_bridge.parent.mkdir(parents=True, exist_ok=True)
if user_bridge.exists():
shutil.rmtree(user_bridge)
shutil.copytree(source, user_bridge, ignore=shutil.ignore_patterns("node_modules", "dist"))
# Install and build
try:
console.print(" Installing dependencies...")
subprocess.run(["npm", "install"], cwd=user_bridge, check=True, capture_output=True)
console.print(" Building...")
subprocess.run(["npm", "run", "build"], cwd=user_bridge, check=True, capture_output=True)
console.print("[green]✓[/green] Bridge ready\n")
except subprocess.CalledProcessError as e:
console.print(f"[red]Build failed: {e}[/red]")
if e.stderr:
console.print(f"[dim]{e.stderr.decode()[:500]}[/dim]")
raise typer.Exit(1)
return user_bridge
@channels_app.command("login")
def channels_login():
"""Link device via QR code."""
import subprocess
bridge_dir = _get_bridge_dir()
console.print(f"{__logo__} Starting bridge...")
console.print("Scan the QR code to connect.\n")
try:
subprocess.run(["npm", "start"], cwd=bridge_dir, check=True)
except subprocess.CalledProcessError as e:
console.print(f"[red]Bridge failed: {e}[/red]")
except FileNotFoundError:
console.print("[red]npm not found. Please install Node.js.[/red]")
# ============================================================================
# Cron Commands
# ============================================================================
cron_app = typer.Typer(help="Manage scheduled tasks")
app.add_typer(cron_app, name="cron")
@cron_app.command("list")
def cron_list(
all: bool = typer.Option(False, "--all", "-a", help="Include disabled jobs"),
):
"""List scheduled jobs."""
from nanobot.config.loader import get_data_dir
from nanobot.cron.service import CronService
store_path = get_data_dir() / "cron" / "jobs.json"
service = CronService(store_path)
jobs = service.list_jobs(include_disabled=all)
if not jobs:
console.print("No scheduled jobs.")
return
table = Table(title="Scheduled Jobs")
table.add_column("ID", style="cyan")
table.add_column("Name")
table.add_column("Schedule")
table.add_column("Status")
table.add_column("Next Run")
import time
for job in jobs:
# Format schedule
if job.schedule.kind == "every":
sched = f"every {(job.schedule.every_ms or 0) // 1000}s"
elif job.schedule.kind == "cron":
sched = job.schedule.expr or ""
else:
sched = "one-time"
# Format next run
next_run = ""
if job.state.next_run_at_ms:
next_time = time.strftime("%Y-%m-%d %H:%M", time.localtime(job.state.next_run_at_ms / 1000))
next_run = next_time
status = "[green]enabled[/green]" if job.enabled else "[dim]disabled[/dim]"
table.add_row(job.id, job.name, sched, status, next_run)
console.print(table)
@cron_app.command("add")
def cron_add(
name: str = typer.Option(..., "--name", "-n", help="Job name"),
message: str = typer.Option(..., "--message", "-m", help="Message for agent"),
every: int = typer.Option(None, "--every", "-e", help="Run every N seconds"),
cron_expr: str = typer.Option(None, "--cron", "-c", help="Cron expression (e.g. '0 9 * * *')"),
at: str = typer.Option(None, "--at", help="Run once at time (ISO format)"),
deliver: bool = typer.Option(False, "--deliver", "-d", help="Deliver response to channel"),
to: str = typer.Option(None, "--to", help="Recipient for delivery"),
):
"""Add a scheduled job."""
from nanobot.config.loader import get_data_dir
from nanobot.cron.service import CronService
from nanobot.cron.types import CronSchedule
# Determine schedule type
if every:
schedule = CronSchedule(kind="every", every_ms=every * 1000)
elif cron_expr:
schedule = CronSchedule(kind="cron", expr=cron_expr)
elif at:
import datetime
dt = datetime.datetime.fromisoformat(at)
schedule = CronSchedule(kind="at", at_ms=int(dt.timestamp() * 1000))
else:
console.print("[red]Error: Must specify --every, --cron, or --at[/red]")
raise typer.Exit(1)
store_path = get_data_dir() / "cron" / "jobs.json"
service = CronService(store_path)
job = service.add_job(
name=name,
schedule=schedule,
message=message,
deliver=deliver,
to=to,
)
console.print(f"[green]✓[/green] Added job '{job.name}' ({job.id})")
@cron_app.command("remove")
def cron_remove(
job_id: str = typer.Argument(..., help="Job ID to remove"),
):
"""Remove a scheduled job."""
from nanobot.config.loader import get_data_dir
from nanobot.cron.service import CronService
store_path = get_data_dir() / "cron" / "jobs.json"
service = CronService(store_path)
if service.remove_job(job_id):
console.print(f"[green]✓[/green] Removed job {job_id}")
else:
console.print(f"[red]Job {job_id} not found[/red]")
@cron_app.command("enable")
def cron_enable(
job_id: str = typer.Argument(..., help="Job ID"),
disable: bool = typer.Option(False, "--disable", help="Disable instead of enable"),
):
"""Enable or disable a job."""
from nanobot.config.loader import get_data_dir
from nanobot.cron.service import CronService
store_path = get_data_dir() / "cron" / "jobs.json"
service = CronService(store_path)
job = service.enable_job(job_id, enabled=not disable)
if job:
status = "disabled" if disable else "enabled"
console.print(f"[green]✓[/green] Job '{job.name}' {status}")
else:
console.print(f"[red]Job {job_id} not found[/red]")
@cron_app.command("run")
def cron_run(
job_id: str = typer.Argument(..., help="Job ID to run"),
force: bool = typer.Option(False, "--force", "-f", help="Run even if disabled"),
):
"""Manually run a job."""
from nanobot.config.loader import get_data_dir
from nanobot.cron.service import CronService
store_path = get_data_dir() / "cron" / "jobs.json"
service = CronService(store_path)
async def run():
return await service.run_job(job_id, force=force)
if asyncio.run(run()):
console.print(f"[green]✓[/green] Job executed")
else:
console.print(f"[red]Failed to run job {job_id}[/red]")
# ============================================================================
# Status Commands
# ============================================================================
@app.command()
def status():
"""Show nanobot status."""
from nanobot.config.loader import load_config, get_config_path
from nanobot.utils.helpers import get_workspace_path
config_path = get_config_path()
workspace = get_workspace_path()
console.print(f"{__logo__} nanobot Status\n")
console.print(f"Config: {config_path} {'[green]✓[/green]' if config_path.exists() else '[red]✗[/red]'}")
console.print(f"Workspace: {workspace} {'[green]✓[/green]' if workspace.exists() else '[red]✗[/red]'}")
if config_path.exists():
config = load_config()
console.print(f"Model: {config.agents.defaults.model}")
# Check API keys
has_openrouter = bool(config.providers.openrouter.api_key)
has_anthropic = bool(config.providers.anthropic.api_key)
has_openai = bool(config.providers.openai.api_key)
console.print(f"OpenRouter API: {'[green]✓[/green]' if has_openrouter else '[dim]not set[/dim]'}")
console.print(f"Anthropic API: {'[green]✓[/green]' if has_anthropic else '[dim]not set[/dim]'}")
console.print(f"OpenAI API: {'[green]✓[/green]' if has_openai else '[dim]not set[/dim]'}")
if __name__ == "__main__":
app()

View File

@@ -0,0 +1,6 @@
"""Configuration module for nanobot."""
from nanobot.config.loader import load_config, get_config_path
from nanobot.config.schema import Config
__all__ = ["Config", "load_config", "get_config_path"]

95
nanobot/config/loader.py Normal file
View File

@@ -0,0 +1,95 @@
"""Configuration loading utilities."""
import json
from pathlib import Path
from typing import Any
from nanobot.config.schema import Config
def get_config_path() -> Path:
"""Get the default configuration file path."""
return Path.home() / ".nanobot" / "config.json"
def get_data_dir() -> Path:
"""Get the nanobot data directory."""
from nanobot.utils.helpers import get_data_path
return get_data_path()
def load_config(config_path: Path | None = None) -> Config:
"""
Load configuration from file or create default.
Args:
config_path: Optional path to config file. Uses default if not provided.
Returns:
Loaded configuration object.
"""
path = config_path or get_config_path()
if path.exists():
try:
with open(path) as f:
data = json.load(f)
return Config.model_validate(convert_keys(data))
except (json.JSONDecodeError, ValueError) as e:
print(f"Warning: Failed to load config from {path}: {e}")
print("Using default configuration.")
return Config()
def save_config(config: Config, config_path: Path | None = None) -> None:
"""
Save configuration to file.
Args:
config: Configuration to save.
config_path: Optional path to save to. Uses default if not provided.
"""
path = config_path or get_config_path()
path.parent.mkdir(parents=True, exist_ok=True)
# Convert to clawbot-compatible format (camelCase)
data = config.model_dump()
data = convert_to_camel(data)
with open(path, "w") as f:
json.dump(data, f, indent=2)
def convert_keys(data: Any) -> Any:
"""Convert camelCase keys to snake_case for Pydantic."""
if isinstance(data, dict):
return {camel_to_snake(k): convert_keys(v) for k, v in data.items()}
if isinstance(data, list):
return [convert_keys(item) for item in data]
return data
def convert_to_camel(data: Any) -> Any:
"""Convert snake_case keys to camelCase for clawbot compatibility."""
if isinstance(data, dict):
return {snake_to_camel(k): convert_to_camel(v) for k, v in data.items()}
if isinstance(data, list):
return [convert_to_camel(item) for item in data]
return data
def camel_to_snake(name: str) -> str:
"""Convert camelCase to snake_case."""
result = []
for i, char in enumerate(name):
if char.isupper() and i > 0:
result.append("_")
result.append(char.lower())
return "".join(result)
def snake_to_camel(name: str) -> str:
"""Convert snake_case to camelCase."""
components = name.split("_")
return components[0] + "".join(x.title() for x in components[1:])

111
nanobot/config/schema.py Normal file
View File

@@ -0,0 +1,111 @@
"""Configuration schema using Pydantic."""
from pathlib import Path
from pydantic import BaseModel, Field
from pydantic_settings import BaseSettings
class WhatsAppConfig(BaseModel):
"""WhatsApp channel configuration."""
enabled: bool = False
bridge_url: str = "ws://localhost:3001"
allow_from: list[str] = Field(default_factory=list) # Allowed phone numbers
class TelegramConfig(BaseModel):
"""Telegram channel configuration."""
enabled: bool = False
token: str = "" # Bot token from @BotFather
allow_from: list[str] = Field(default_factory=list) # Allowed user IDs or usernames
class ChannelsConfig(BaseModel):
"""Configuration for chat channels."""
whatsapp: WhatsAppConfig = Field(default_factory=WhatsAppConfig)
telegram: TelegramConfig = Field(default_factory=TelegramConfig)
class AgentDefaults(BaseModel):
"""Default agent configuration."""
workspace: str = "~/.nanobot/workspace"
model: str = "anthropic/claude-opus-4-5"
max_tokens: int = 8192
temperature: float = 0.7
max_tool_iterations: int = 20
class AgentsConfig(BaseModel):
"""Agent configuration."""
defaults: AgentDefaults = Field(default_factory=AgentDefaults)
class ProviderConfig(BaseModel):
"""LLM provider configuration."""
api_key: str = ""
api_base: str | None = None
class ProvidersConfig(BaseModel):
"""Configuration for LLM providers."""
anthropic: ProviderConfig = Field(default_factory=ProviderConfig)
openai: ProviderConfig = Field(default_factory=ProviderConfig)
openrouter: ProviderConfig = Field(default_factory=ProviderConfig)
class GatewayConfig(BaseModel):
"""Gateway/server configuration."""
host: str = "0.0.0.0"
port: int = 18789
class WebSearchConfig(BaseModel):
"""Web search tool configuration."""
api_key: str = "" # Brave Search API key
max_results: int = 5
class WebToolsConfig(BaseModel):
"""Web tools configuration."""
search: WebSearchConfig = Field(default_factory=WebSearchConfig)
class ToolsConfig(BaseModel):
"""Tools configuration."""
web: WebToolsConfig = Field(default_factory=WebToolsConfig)
class Config(BaseSettings):
"""
Root configuration for nanobot.
Compatible with clawbot configuration format for easy migration.
"""
agents: AgentsConfig = Field(default_factory=AgentsConfig)
channels: ChannelsConfig = Field(default_factory=ChannelsConfig)
providers: ProvidersConfig = Field(default_factory=ProvidersConfig)
gateway: GatewayConfig = Field(default_factory=GatewayConfig)
tools: ToolsConfig = Field(default_factory=ToolsConfig)
@property
def workspace_path(self) -> Path:
"""Get expanded workspace path."""
return Path(self.agents.defaults.workspace).expanduser()
def get_api_key(self) -> str | None:
"""Get API key in priority order: OpenRouter > Anthropic > OpenAI."""
return (
self.providers.openrouter.api_key or
self.providers.anthropic.api_key or
self.providers.openai.api_key or
None
)
def get_api_base(self) -> str | None:
"""Get API base URL if using OpenRouter."""
if self.providers.openrouter.api_key:
return self.providers.openrouter.api_base or "https://openrouter.ai/api/v1"
return None
class Config:
env_prefix = "NANOBOT_"
env_nested_delimiter = "__"

6
nanobot/cron/__init__.py Normal file
View File

@@ -0,0 +1,6 @@
"""Cron service for scheduled agent tasks."""
from nanobot.cron.service import CronService
from nanobot.cron.types import CronJob, CronSchedule
__all__ = ["CronService", "CronJob", "CronSchedule"]

346
nanobot/cron/service.py Normal file
View File

@@ -0,0 +1,346 @@
"""Cron service for scheduling agent tasks."""
import asyncio
import json
import time
import uuid
from pathlib import Path
from typing import Any, Callable, Coroutine
from loguru import logger
from nanobot.cron.types import CronJob, CronJobState, CronPayload, CronSchedule, CronStore
def _now_ms() -> int:
return int(time.time() * 1000)
def _compute_next_run(schedule: CronSchedule, now_ms: int) -> int | None:
"""Compute next run time in ms."""
if schedule.kind == "at":
return schedule.at_ms if schedule.at_ms and schedule.at_ms > now_ms else None
if schedule.kind == "every":
if not schedule.every_ms or schedule.every_ms <= 0:
return None
# Next interval from now
return now_ms + schedule.every_ms
if schedule.kind == "cron" and schedule.expr:
try:
from croniter import croniter
cron = croniter(schedule.expr, time.time())
next_time = cron.get_next()
return int(next_time * 1000)
except Exception:
return None
return None
class CronService:
"""Service for managing and executing scheduled jobs."""
def __init__(
self,
store_path: Path,
on_job: Callable[[CronJob], Coroutine[Any, Any, str | None]] | None = None
):
self.store_path = store_path
self.on_job = on_job # Callback to execute job, returns response text
self._store: CronStore | None = None
self._timer_task: asyncio.Task | None = None
self._running = False
def _load_store(self) -> CronStore:
"""Load jobs from disk."""
if self._store:
return self._store
if self.store_path.exists():
try:
data = json.loads(self.store_path.read_text())
jobs = []
for j in data.get("jobs", []):
jobs.append(CronJob(
id=j["id"],
name=j["name"],
enabled=j.get("enabled", True),
schedule=CronSchedule(
kind=j["schedule"]["kind"],
at_ms=j["schedule"].get("atMs"),
every_ms=j["schedule"].get("everyMs"),
expr=j["schedule"].get("expr"),
tz=j["schedule"].get("tz"),
),
payload=CronPayload(
kind=j["payload"].get("kind", "agent_turn"),
message=j["payload"].get("message", ""),
deliver=j["payload"].get("deliver", False),
channel=j["payload"].get("channel"),
to=j["payload"].get("to"),
),
state=CronJobState(
next_run_at_ms=j.get("state", {}).get("nextRunAtMs"),
last_run_at_ms=j.get("state", {}).get("lastRunAtMs"),
last_status=j.get("state", {}).get("lastStatus"),
last_error=j.get("state", {}).get("lastError"),
),
created_at_ms=j.get("createdAtMs", 0),
updated_at_ms=j.get("updatedAtMs", 0),
delete_after_run=j.get("deleteAfterRun", False),
))
self._store = CronStore(jobs=jobs)
except Exception as e:
logger.warning(f"Failed to load cron store: {e}")
self._store = CronStore()
else:
self._store = CronStore()
return self._store
def _save_store(self) -> None:
"""Save jobs to disk."""
if not self._store:
return
self.store_path.parent.mkdir(parents=True, exist_ok=True)
data = {
"version": self._store.version,
"jobs": [
{
"id": j.id,
"name": j.name,
"enabled": j.enabled,
"schedule": {
"kind": j.schedule.kind,
"atMs": j.schedule.at_ms,
"everyMs": j.schedule.every_ms,
"expr": j.schedule.expr,
"tz": j.schedule.tz,
},
"payload": {
"kind": j.payload.kind,
"message": j.payload.message,
"deliver": j.payload.deliver,
"channel": j.payload.channel,
"to": j.payload.to,
},
"state": {
"nextRunAtMs": j.state.next_run_at_ms,
"lastRunAtMs": j.state.last_run_at_ms,
"lastStatus": j.state.last_status,
"lastError": j.state.last_error,
},
"createdAtMs": j.created_at_ms,
"updatedAtMs": j.updated_at_ms,
"deleteAfterRun": j.delete_after_run,
}
for j in self._store.jobs
]
}
self.store_path.write_text(json.dumps(data, indent=2))
async def start(self) -> None:
"""Start the cron service."""
self._running = True
self._load_store()
self._recompute_next_runs()
self._save_store()
self._arm_timer()
logger.info(f"Cron service started with {len(self._store.jobs if self._store else [])} jobs")
def stop(self) -> None:
"""Stop the cron service."""
self._running = False
if self._timer_task:
self._timer_task.cancel()
self._timer_task = None
def _recompute_next_runs(self) -> None:
"""Recompute next run times for all enabled jobs."""
if not self._store:
return
now = _now_ms()
for job in self._store.jobs:
if job.enabled:
job.state.next_run_at_ms = _compute_next_run(job.schedule, now)
def _get_next_wake_ms(self) -> int | None:
"""Get the earliest next run time across all jobs."""
if not self._store:
return None
times = [j.state.next_run_at_ms for j in self._store.jobs
if j.enabled and j.state.next_run_at_ms]
return min(times) if times else None
def _arm_timer(self) -> None:
"""Schedule the next timer tick."""
if self._timer_task:
self._timer_task.cancel()
next_wake = self._get_next_wake_ms()
if not next_wake or not self._running:
return
delay_ms = max(0, next_wake - _now_ms())
delay_s = delay_ms / 1000
async def tick():
await asyncio.sleep(delay_s)
if self._running:
await self._on_timer()
self._timer_task = asyncio.create_task(tick())
async def _on_timer(self) -> None:
"""Handle timer tick - run due jobs."""
if not self._store:
return
now = _now_ms()
due_jobs = [
j for j in self._store.jobs
if j.enabled and j.state.next_run_at_ms and now >= j.state.next_run_at_ms
]
for job in due_jobs:
await self._execute_job(job)
self._save_store()
self._arm_timer()
async def _execute_job(self, job: CronJob) -> None:
"""Execute a single job."""
start_ms = _now_ms()
logger.info(f"Cron: executing job '{job.name}' ({job.id})")
try:
response = None
if self.on_job:
response = await self.on_job(job)
job.state.last_status = "ok"
job.state.last_error = None
logger.info(f"Cron: job '{job.name}' completed")
except Exception as e:
job.state.last_status = "error"
job.state.last_error = str(e)
logger.error(f"Cron: job '{job.name}' failed: {e}")
job.state.last_run_at_ms = start_ms
job.updated_at_ms = _now_ms()
# Handle one-shot jobs
if job.schedule.kind == "at":
if job.delete_after_run:
self._store.jobs = [j for j in self._store.jobs if j.id != job.id]
else:
job.enabled = False
job.state.next_run_at_ms = None
else:
# Compute next run
job.state.next_run_at_ms = _compute_next_run(job.schedule, _now_ms())
# ========== Public API ==========
def list_jobs(self, include_disabled: bool = False) -> list[CronJob]:
"""List all jobs."""
store = self._load_store()
jobs = store.jobs if include_disabled else [j for j in store.jobs if j.enabled]
return sorted(jobs, key=lambda j: j.state.next_run_at_ms or float('inf'))
def add_job(
self,
name: str,
schedule: CronSchedule,
message: str,
deliver: bool = False,
channel: str | None = None,
to: str | None = None,
delete_after_run: bool = False,
) -> CronJob:
"""Add a new job."""
store = self._load_store()
now = _now_ms()
job = CronJob(
id=str(uuid.uuid4())[:8],
name=name,
enabled=True,
schedule=schedule,
payload=CronPayload(
kind="agent_turn",
message=message,
deliver=deliver,
channel=channel,
to=to,
),
state=CronJobState(next_run_at_ms=_compute_next_run(schedule, now)),
created_at_ms=now,
updated_at_ms=now,
delete_after_run=delete_after_run,
)
store.jobs.append(job)
self._save_store()
self._arm_timer()
logger.info(f"Cron: added job '{name}' ({job.id})")
return job
def remove_job(self, job_id: str) -> bool:
"""Remove a job by ID."""
store = self._load_store()
before = len(store.jobs)
store.jobs = [j for j in store.jobs if j.id != job_id]
removed = len(store.jobs) < before
if removed:
self._save_store()
self._arm_timer()
logger.info(f"Cron: removed job {job_id}")
return removed
def enable_job(self, job_id: str, enabled: bool = True) -> CronJob | None:
"""Enable or disable a job."""
store = self._load_store()
for job in store.jobs:
if job.id == job_id:
job.enabled = enabled
job.updated_at_ms = _now_ms()
if enabled:
job.state.next_run_at_ms = _compute_next_run(job.schedule, _now_ms())
else:
job.state.next_run_at_ms = None
self._save_store()
self._arm_timer()
return job
return None
async def run_job(self, job_id: str, force: bool = False) -> bool:
"""Manually run a job."""
store = self._load_store()
for job in store.jobs:
if job.id == job_id:
if not force and not job.enabled:
return False
await self._execute_job(job)
self._save_store()
self._arm_timer()
return True
return False
def status(self) -> dict:
"""Get service status."""
store = self._load_store()
return {
"enabled": self._running,
"jobs": len(store.jobs),
"next_wake_at_ms": self._get_next_wake_ms(),
}

59
nanobot/cron/types.py Normal file
View File

@@ -0,0 +1,59 @@
"""Cron types."""
from dataclasses import dataclass, field
from typing import Literal
@dataclass
class CronSchedule:
"""Schedule definition for a cron job."""
kind: Literal["at", "every", "cron"]
# For "at": timestamp in ms
at_ms: int | None = None
# For "every": interval in ms
every_ms: int | None = None
# For "cron": cron expression (e.g. "0 9 * * *")
expr: str | None = None
# Timezone for cron expressions
tz: str | None = None
@dataclass
class CronPayload:
"""What to do when the job runs."""
kind: Literal["system_event", "agent_turn"] = "agent_turn"
message: str = ""
# Deliver response to channel
deliver: bool = False
channel: str | None = None # e.g. "whatsapp"
to: str | None = None # e.g. phone number
@dataclass
class CronJobState:
"""Runtime state of a job."""
next_run_at_ms: int | None = None
last_run_at_ms: int | None = None
last_status: Literal["ok", "error", "skipped"] | None = None
last_error: str | None = None
@dataclass
class CronJob:
"""A scheduled job."""
id: str
name: str
enabled: bool = True
schedule: CronSchedule = field(default_factory=lambda: CronSchedule(kind="every"))
payload: CronPayload = field(default_factory=CronPayload)
state: CronJobState = field(default_factory=CronJobState)
created_at_ms: int = 0
updated_at_ms: int = 0
delete_after_run: bool = False
@dataclass
class CronStore:
"""Persistent store for cron jobs."""
version: int = 1
jobs: list[CronJob] = field(default_factory=list)

View File

@@ -0,0 +1,5 @@
"""Heartbeat service for periodic agent wake-ups."""
from nanobot.heartbeat.service import HeartbeatService
__all__ = ["HeartbeatService"]

View File

@@ -0,0 +1,130 @@
"""Heartbeat service - periodic agent wake-up to check for tasks."""
import asyncio
from pathlib import Path
from typing import Any, Callable, Coroutine
from loguru import logger
# Default interval: 30 minutes
DEFAULT_HEARTBEAT_INTERVAL_S = 30 * 60
# The prompt sent to agent during heartbeat
HEARTBEAT_PROMPT = """Read HEARTBEAT.md in your workspace (if it exists).
Follow any instructions or tasks listed there.
If nothing needs attention, reply with just: HEARTBEAT_OK"""
# Token that indicates "nothing to do"
HEARTBEAT_OK_TOKEN = "HEARTBEAT_OK"
def _is_heartbeat_empty(content: str | None) -> bool:
"""Check if HEARTBEAT.md has no actionable content."""
if not content:
return True
# Lines to skip: empty, headers, HTML comments, empty checkboxes
skip_patterns = {"- [ ]", "* [ ]", "- [x]", "* [x]"}
for line in content.split("\n"):
line = line.strip()
if not line or line.startswith("#") or line.startswith("<!--") or line in skip_patterns:
continue
return False # Found actionable content
return True
class HeartbeatService:
"""
Periodic heartbeat service that wakes the agent to check for tasks.
The agent reads HEARTBEAT.md from the workspace and executes any
tasks listed there. If nothing needs attention, it replies HEARTBEAT_OK.
"""
def __init__(
self,
workspace: Path,
on_heartbeat: Callable[[str], Coroutine[Any, Any, str]] | None = None,
interval_s: int = DEFAULT_HEARTBEAT_INTERVAL_S,
enabled: bool = True,
):
self.workspace = workspace
self.on_heartbeat = on_heartbeat
self.interval_s = interval_s
self.enabled = enabled
self._running = False
self._task: asyncio.Task | None = None
@property
def heartbeat_file(self) -> Path:
return self.workspace / "HEARTBEAT.md"
def _read_heartbeat_file(self) -> str | None:
"""Read HEARTBEAT.md content."""
if self.heartbeat_file.exists():
try:
return self.heartbeat_file.read_text()
except Exception:
return None
return None
async def start(self) -> None:
"""Start the heartbeat service."""
if not self.enabled:
logger.info("Heartbeat disabled")
return
self._running = True
self._task = asyncio.create_task(self._run_loop())
logger.info(f"Heartbeat started (every {self.interval_s}s)")
def stop(self) -> None:
"""Stop the heartbeat service."""
self._running = False
if self._task:
self._task.cancel()
self._task = None
async def _run_loop(self) -> None:
"""Main heartbeat loop."""
while self._running:
try:
await asyncio.sleep(self.interval_s)
if self._running:
await self._tick()
except asyncio.CancelledError:
break
except Exception as e:
logger.error(f"Heartbeat error: {e}")
async def _tick(self) -> None:
"""Execute a single heartbeat tick."""
content = self._read_heartbeat_file()
# Skip if HEARTBEAT.md is empty or doesn't exist
if _is_heartbeat_empty(content):
logger.debug("Heartbeat: no tasks (HEARTBEAT.md empty)")
return
logger.info("Heartbeat: checking for tasks...")
if self.on_heartbeat:
try:
response = await self.on_heartbeat(HEARTBEAT_PROMPT)
# Check if agent said "nothing to do"
if HEARTBEAT_OK_TOKEN in response.upper().replace("_", ""):
logger.info("Heartbeat: OK (no action needed)")
else:
logger.info(f"Heartbeat: completed task")
except Exception as e:
logger.error(f"Heartbeat execution failed: {e}")
async def trigger_now(self) -> str | None:
"""Manually trigger a heartbeat."""
if self.on_heartbeat:
return await self.on_heartbeat(HEARTBEAT_PROMPT)
return None

View File

@@ -0,0 +1,6 @@
"""LLM provider abstraction module."""
from nanobot.providers.base import LLMProvider, LLMResponse
from nanobot.providers.litellm_provider import LiteLLMProvider
__all__ = ["LLMProvider", "LLMResponse", "LiteLLMProvider"]

69
nanobot/providers/base.py Normal file
View File

@@ -0,0 +1,69 @@
"""Base LLM provider interface."""
from abc import ABC, abstractmethod
from dataclasses import dataclass, field
from typing import Any
@dataclass
class ToolCallRequest:
"""A tool call request from the LLM."""
id: str
name: str
arguments: dict[str, Any]
@dataclass
class LLMResponse:
"""Response from an LLM provider."""
content: str | None
tool_calls: list[ToolCallRequest] = field(default_factory=list)
finish_reason: str = "stop"
usage: dict[str, int] = field(default_factory=dict)
@property
def has_tool_calls(self) -> bool:
"""Check if response contains tool calls."""
return len(self.tool_calls) > 0
class LLMProvider(ABC):
"""
Abstract base class for LLM providers.
Implementations should handle the specifics of each provider's API
while maintaining a consistent interface.
"""
def __init__(self, api_key: str | None = None, api_base: str | None = None):
self.api_key = api_key
self.api_base = api_base
@abstractmethod
async def chat(
self,
messages: list[dict[str, Any]],
tools: list[dict[str, Any]] | None = None,
model: str | None = None,
max_tokens: int = 4096,
temperature: float = 0.7,
) -> LLMResponse:
"""
Send a chat completion request.
Args:
messages: List of message dicts with 'role' and 'content'.
tools: Optional list of tool definitions.
model: Model identifier (provider-specific).
max_tokens: Maximum tokens in response.
temperature: Sampling temperature.
Returns:
LLMResponse with content and/or tool calls.
"""
pass
@abstractmethod
def get_default_model(self) -> str:
"""Get the default model for this provider."""
pass

View File

@@ -0,0 +1,139 @@
"""LiteLLM provider implementation for multi-provider support."""
import os
from typing import Any
import litellm
from litellm import acompletion
from nanobot.providers.base import LLMProvider, LLMResponse, ToolCallRequest
class LiteLLMProvider(LLMProvider):
"""
LLM provider using LiteLLM for multi-provider support.
Supports OpenRouter, Anthropic, OpenAI, and many other providers through
a unified interface.
"""
def __init__(
self,
api_key: str | None = None,
api_base: str | None = None,
default_model: str = "anthropic/claude-opus-4-5"
):
super().__init__(api_key, api_base)
self.default_model = default_model
# Detect OpenRouter by api_key prefix or explicit api_base
self.is_openrouter = (
(api_key and api_key.startswith("sk-or-")) or
(api_base and "openrouter" in api_base)
)
# Configure LiteLLM based on provider
if api_key:
if self.is_openrouter:
# OpenRouter mode - set key
os.environ["OPENROUTER_API_KEY"] = api_key
elif "anthropic" in default_model:
os.environ.setdefault("ANTHROPIC_API_KEY", api_key)
elif "openai" in default_model or "gpt" in default_model:
os.environ.setdefault("OPENAI_API_KEY", api_key)
if api_base:
litellm.api_base = api_base
# Disable LiteLLM logging noise
litellm.suppress_debug_info = True
async def chat(
self,
messages: list[dict[str, Any]],
tools: list[dict[str, Any]] | None = None,
model: str | None = None,
max_tokens: int = 4096,
temperature: float = 0.7,
) -> LLMResponse:
"""
Send a chat completion request via LiteLLM.
Args:
messages: List of message dicts with 'role' and 'content'.
tools: Optional list of tool definitions in OpenAI format.
model: Model identifier (e.g., 'anthropic/claude-sonnet-4-5').
max_tokens: Maximum tokens in response.
temperature: Sampling temperature.
Returns:
LLMResponse with content and/or tool calls.
"""
model = model or self.default_model
# For OpenRouter, prefix model name if not already prefixed
if self.is_openrouter and not model.startswith("openrouter/"):
model = f"openrouter/{model}"
kwargs: dict[str, Any] = {
"model": model,
"messages": messages,
"max_tokens": max_tokens,
"temperature": temperature,
}
if tools:
kwargs["tools"] = tools
kwargs["tool_choice"] = "auto"
try:
response = await acompletion(**kwargs)
return self._parse_response(response)
except Exception as e:
# Return error as content for graceful handling
return LLMResponse(
content=f"Error calling LLM: {str(e)}",
finish_reason="error",
)
def _parse_response(self, response: Any) -> LLMResponse:
"""Parse LiteLLM response into our standard format."""
choice = response.choices[0]
message = choice.message
tool_calls = []
if hasattr(message, "tool_calls") and message.tool_calls:
for tc in message.tool_calls:
# Parse arguments from JSON string if needed
args = tc.function.arguments
if isinstance(args, str):
import json
try:
args = json.loads(args)
except json.JSONDecodeError:
args = {"raw": args}
tool_calls.append(ToolCallRequest(
id=tc.id,
name=tc.function.name,
arguments=args,
))
usage = {}
if hasattr(response, "usage") and response.usage:
usage = {
"prompt_tokens": response.usage.prompt_tokens,
"completion_tokens": response.usage.completion_tokens,
"total_tokens": response.usage.total_tokens,
}
return LLMResponse(
content=message.content,
tool_calls=tool_calls,
finish_reason=choice.finish_reason or "stop",
usage=usage,
)
def get_default_model(self) -> str:
"""Get the default model."""
return self.default_model

View File

@@ -0,0 +1,5 @@
"""Session management module."""
from nanobot.session.manager import SessionManager, Session
__all__ = ["SessionManager", "Session"]

202
nanobot/session/manager.py Normal file
View File

@@ -0,0 +1,202 @@
"""Session management for conversation history."""
import json
from pathlib import Path
from dataclasses import dataclass, field
from datetime import datetime
from typing import Any
from loguru import logger
from nanobot.utils.helpers import ensure_dir, safe_filename
@dataclass
class Session:
"""
A conversation session.
Stores messages in JSONL format for easy reading and persistence.
"""
key: str # channel:chat_id
messages: list[dict[str, Any]] = field(default_factory=list)
created_at: datetime = field(default_factory=datetime.now)
updated_at: datetime = field(default_factory=datetime.now)
metadata: dict[str, Any] = field(default_factory=dict)
def add_message(self, role: str, content: str, **kwargs: Any) -> None:
"""Add a message to the session."""
msg = {
"role": role,
"content": content,
"timestamp": datetime.now().isoformat(),
**kwargs
}
self.messages.append(msg)
self.updated_at = datetime.now()
def get_history(self, max_messages: int = 50) -> list[dict[str, Any]]:
"""
Get message history for LLM context.
Args:
max_messages: Maximum messages to return.
Returns:
List of messages in LLM format.
"""
# Get recent messages
recent = self.messages[-max_messages:] if len(self.messages) > max_messages else self.messages
# Convert to LLM format (just role and content)
return [{"role": m["role"], "content": m["content"]} for m in recent]
def clear(self) -> None:
"""Clear all messages in the session."""
self.messages = []
self.updated_at = datetime.now()
class SessionManager:
"""
Manages conversation sessions.
Sessions are stored as JSONL files in the sessions directory.
"""
def __init__(self, workspace: Path):
self.workspace = workspace
self.sessions_dir = ensure_dir(Path.home() / ".nanobot" / "sessions")
self._cache: dict[str, Session] = {}
def _get_session_path(self, key: str) -> Path:
"""Get the file path for a session."""
safe_key = safe_filename(key.replace(":", "_"))
return self.sessions_dir / f"{safe_key}.jsonl"
def get_or_create(self, key: str) -> Session:
"""
Get an existing session or create a new one.
Args:
key: Session key (usually channel:chat_id).
Returns:
The session.
"""
# Check cache
if key in self._cache:
return self._cache[key]
# Try to load from disk
session = self._load(key)
if session is None:
session = Session(key=key)
self._cache[key] = session
return session
def _load(self, key: str) -> Session | None:
"""Load a session from disk."""
path = self._get_session_path(key)
if not path.exists():
return None
try:
messages = []
metadata = {}
created_at = None
with open(path) as f:
for line in f:
line = line.strip()
if not line:
continue
data = json.loads(line)
if data.get("_type") == "metadata":
metadata = data.get("metadata", {})
created_at = datetime.fromisoformat(data["created_at"]) if data.get("created_at") else None
else:
messages.append(data)
return Session(
key=key,
messages=messages,
created_at=created_at or datetime.now(),
metadata=metadata
)
except Exception as e:
logger.warning(f"Failed to load session {key}: {e}")
return None
def save(self, session: Session) -> None:
"""Save a session to disk."""
path = self._get_session_path(session.key)
with open(path, "w") as f:
# Write metadata first
metadata_line = {
"_type": "metadata",
"created_at": session.created_at.isoformat(),
"updated_at": session.updated_at.isoformat(),
"metadata": session.metadata
}
f.write(json.dumps(metadata_line) + "\n")
# Write messages
for msg in session.messages:
f.write(json.dumps(msg) + "\n")
self._cache[session.key] = session
def delete(self, key: str) -> bool:
"""
Delete a session.
Args:
key: Session key.
Returns:
True if deleted, False if not found.
"""
# Remove from cache
self._cache.pop(key, None)
# Remove file
path = self._get_session_path(key)
if path.exists():
path.unlink()
return True
return False
def list_sessions(self) -> list[dict[str, Any]]:
"""
List all sessions.
Returns:
List of session info dicts.
"""
sessions = []
for path in self.sessions_dir.glob("*.jsonl"):
try:
# Read just the metadata line
with open(path) as f:
first_line = f.readline().strip()
if first_line:
data = json.loads(first_line)
if data.get("_type") == "metadata":
sessions.append({
"key": path.stem.replace("_", ":"),
"created_at": data.get("created_at"),
"updated_at": data.get("updated_at"),
"path": str(path)
})
except Exception:
continue
return sorted(sessions, key=lambda x: x.get("updated_at", ""), reverse=True)

View File

@@ -0,0 +1,48 @@
---
name: github
description: "Interact with GitHub using the `gh` CLI. Use `gh issue`, `gh pr`, `gh run`, and `gh api` for issues, PRs, CI runs, and advanced queries."
metadata: {"openclaw":{"emoji":"🐙","requires":{"bins":["gh"]},"install":[{"id":"brew","kind":"brew","formula":"gh","bins":["gh"],"label":"Install GitHub CLI (brew)"},{"id":"apt","kind":"apt","package":"gh","bins":["gh"],"label":"Install GitHub CLI (apt)"}]}}
---
# GitHub Skill
Use the `gh` CLI to interact with GitHub. Always specify `--repo owner/repo` when not in a git directory, or use URLs directly.
## Pull Requests
Check CI status on a PR:
```bash
gh pr checks 55 --repo owner/repo
```
List recent workflow runs:
```bash
gh run list --repo owner/repo --limit 10
```
View a run and see which steps failed:
```bash
gh run view <run-id> --repo owner/repo
```
View logs for failed steps only:
```bash
gh run view <run-id> --repo owner/repo --log-failed
```
## API for Advanced Queries
The `gh api` command is useful for accessing data not available through other subcommands.
Get PR with specific fields:
```bash
gh api repos/owner/repo/pulls/55 --jq '.title, .state, .user.login'
```
## JSON Output
Most commands support `--json` for structured output. You can use `--jq` to filter:
```bash
gh issue list --repo owner/repo --json number,title --jq '.[] | "\(.number): \(.title)"'
```

View File

@@ -0,0 +1,371 @@
---
name: skill-creator
description: Create or update AgentSkills. Use when designing, structuring, or packaging skills with scripts, references, and assets.
---
# Skill Creator
This skill provides guidance for creating effective skills.
## About Skills
Skills are modular, self-contained packages that extend Codex's capabilities by providing
specialized knowledge, workflows, and tools. Think of them as "onboarding guides" for specific
domains or tasks—they transform Codex from a general-purpose agent into a specialized agent
equipped with procedural knowledge that no model can fully possess.
### What Skills Provide
1. Specialized workflows - Multi-step procedures for specific domains
2. Tool integrations - Instructions for working with specific file formats or APIs
3. Domain expertise - Company-specific knowledge, schemas, business logic
4. Bundled resources - Scripts, references, and assets for complex and repetitive tasks
## Core Principles
### Concise is Key
The context window is a public good. Skills share the context window with everything else Codex needs: system prompt, conversation history, other Skills' metadata, and the actual user request.
**Default assumption: Codex is already very smart.** Only add context Codex doesn't already have. Challenge each piece of information: "Does Codex really need this explanation?" and "Does this paragraph justify its token cost?"
Prefer concise examples over verbose explanations.
### Set Appropriate Degrees of Freedom
Match the level of specificity to the task's fragility and variability:
**High freedom (text-based instructions)**: Use when multiple approaches are valid, decisions depend on context, or heuristics guide the approach.
**Medium freedom (pseudocode or scripts with parameters)**: Use when a preferred pattern exists, some variation is acceptable, or configuration affects behavior.
**Low freedom (specific scripts, few parameters)**: Use when operations are fragile and error-prone, consistency is critical, or a specific sequence must be followed.
Think of Codex as exploring a path: a narrow bridge with cliffs needs specific guardrails (low freedom), while an open field allows many routes (high freedom).
### Anatomy of a Skill
Every skill consists of a required SKILL.md file and optional bundled resources:
```
skill-name/
├── SKILL.md (required)
│ ├── YAML frontmatter metadata (required)
│ │ ├── name: (required)
│ │ └── description: (required)
│ └── Markdown instructions (required)
└── Bundled Resources (optional)
├── scripts/ - Executable code (Python/Bash/etc.)
├── references/ - Documentation intended to be loaded into context as needed
└── assets/ - Files used in output (templates, icons, fonts, etc.)
```
#### SKILL.md (required)
Every SKILL.md consists of:
- **Frontmatter** (YAML): Contains `name` and `description` fields. These are the only fields that Codex reads to determine when the skill gets used, thus it is very important to be clear and comprehensive in describing what the skill is, and when it should be used.
- **Body** (Markdown): Instructions and guidance for using the skill. Only loaded AFTER the skill triggers (if at all).
#### Bundled Resources (optional)
##### Scripts (`scripts/`)
Executable code (Python/Bash/etc.) for tasks that require deterministic reliability or are repeatedly rewritten.
- **When to include**: When the same code is being rewritten repeatedly or deterministic reliability is needed
- **Example**: `scripts/rotate_pdf.py` for PDF rotation tasks
- **Benefits**: Token efficient, deterministic, may be executed without loading into context
- **Note**: Scripts may still need to be read by Codex for patching or environment-specific adjustments
##### References (`references/`)
Documentation and reference material intended to be loaded as needed into context to inform Codex's process and thinking.
- **When to include**: For documentation that Codex should reference while working
- **Examples**: `references/finance.md` for financial schemas, `references/mnda.md` for company NDA template, `references/policies.md` for company policies, `references/api_docs.md` for API specifications
- **Use cases**: Database schemas, API documentation, domain knowledge, company policies, detailed workflow guides
- **Benefits**: Keeps SKILL.md lean, loaded only when Codex determines it's needed
- **Best practice**: If files are large (>10k words), include grep search patterns in SKILL.md
- **Avoid duplication**: Information should live in either SKILL.md or references files, not both. Prefer references files for detailed information unless it's truly core to the skill—this keeps SKILL.md lean while making information discoverable without hogging the context window. Keep only essential procedural instructions and workflow guidance in SKILL.md; move detailed reference material, schemas, and examples to references files.
##### Assets (`assets/`)
Files not intended to be loaded into context, but rather used within the output Codex produces.
- **When to include**: When the skill needs files that will be used in the final output
- **Examples**: `assets/logo.png` for brand assets, `assets/slides.pptx` for PowerPoint templates, `assets/frontend-template/` for HTML/React boilerplate, `assets/font.ttf` for typography
- **Use cases**: Templates, images, icons, boilerplate code, fonts, sample documents that get copied or modified
- **Benefits**: Separates output resources from documentation, enables Codex to use files without loading them into context
#### What to Not Include in a Skill
A skill should only contain essential files that directly support its functionality. Do NOT create extraneous documentation or auxiliary files, including:
- README.md
- INSTALLATION_GUIDE.md
- QUICK_REFERENCE.md
- CHANGELOG.md
- etc.
The skill should only contain the information needed for an AI agent to do the job at hand. It should not contain auxiliary context about the process that went into creating it, setup and testing procedures, user-facing documentation, etc. Creating additional documentation files just adds clutter and confusion.
### Progressive Disclosure Design Principle
Skills use a three-level loading system to manage context efficiently:
1. **Metadata (name + description)** - Always in context (~100 words)
2. **SKILL.md body** - When skill triggers (<5k words)
3. **Bundled resources** - As needed by Codex (Unlimited because scripts can be executed without reading into context window)
#### Progressive Disclosure Patterns
Keep SKILL.md body to the essentials and under 500 lines to minimize context bloat. Split content into separate files when approaching this limit. When splitting out content into other files, it is very important to reference them from SKILL.md and describe clearly when to read them, to ensure the reader of the skill knows they exist and when to use them.
**Key principle:** When a skill supports multiple variations, frameworks, or options, keep only the core workflow and selection guidance in SKILL.md. Move variant-specific details (patterns, examples, configuration) into separate reference files.
**Pattern 1: High-level guide with references**
```markdown
# PDF Processing
## Quick start
Extract text with pdfplumber:
[code example]
## Advanced features
- **Form filling**: See [FORMS.md](FORMS.md) for complete guide
- **API reference**: See [REFERENCE.md](REFERENCE.md) for all methods
- **Examples**: See [EXAMPLES.md](EXAMPLES.md) for common patterns
```
Codex loads FORMS.md, REFERENCE.md, or EXAMPLES.md only when needed.
**Pattern 2: Domain-specific organization**
For Skills with multiple domains, organize content by domain to avoid loading irrelevant context:
```
bigquery-skill/
├── SKILL.md (overview and navigation)
└── reference/
├── finance.md (revenue, billing metrics)
├── sales.md (opportunities, pipeline)
├── product.md (API usage, features)
└── marketing.md (campaigns, attribution)
```
When a user asks about sales metrics, Codex only reads sales.md.
Similarly, for skills supporting multiple frameworks or variants, organize by variant:
```
cloud-deploy/
├── SKILL.md (workflow + provider selection)
└── references/
├── aws.md (AWS deployment patterns)
├── gcp.md (GCP deployment patterns)
└── azure.md (Azure deployment patterns)
```
When the user chooses AWS, Codex only reads aws.md.
**Pattern 3: Conditional details**
Show basic content, link to advanced content:
```markdown
# DOCX Processing
## Creating documents
Use docx-js for new documents. See [DOCX-JS.md](DOCX-JS.md).
## Editing documents
For simple edits, modify the XML directly.
**For tracked changes**: See [REDLINING.md](REDLINING.md)
**For OOXML details**: See [OOXML.md](OOXML.md)
```
Codex reads REDLINING.md or OOXML.md only when the user needs those features.
**Important guidelines:**
- **Avoid deeply nested references** - Keep references one level deep from SKILL.md. All reference files should link directly from SKILL.md.
- **Structure longer reference files** - For files longer than 100 lines, include a table of contents at the top so Codex can see the full scope when previewing.
## Skill Creation Process
Skill creation involves these steps:
1. Understand the skill with concrete examples
2. Plan reusable skill contents (scripts, references, assets)
3. Initialize the skill (run init_skill.py)
4. Edit the skill (implement resources and write SKILL.md)
5. Package the skill (run package_skill.py)
6. Iterate based on real usage
Follow these steps in order, skipping only if there is a clear reason why they are not applicable.
### Skill Naming
- Use lowercase letters, digits, and hyphens only; normalize user-provided titles to hyphen-case (e.g., "Plan Mode" -> `plan-mode`).
- When generating names, generate a name under 64 characters (letters, digits, hyphens).
- Prefer short, verb-led phrases that describe the action.
- Namespace by tool when it improves clarity or triggering (e.g., `gh-address-comments`, `linear-address-issue`).
- Name the skill folder exactly after the skill name.
### Step 1: Understanding the Skill with Concrete Examples
Skip this step only when the skill's usage patterns are already clearly understood. It remains valuable even when working with an existing skill.
To create an effective skill, clearly understand concrete examples of how the skill will be used. This understanding can come from either direct user examples or generated examples that are validated with user feedback.
For example, when building an image-editor skill, relevant questions include:
- "What functionality should the image-editor skill support? Editing, rotating, anything else?"
- "Can you give some examples of how this skill would be used?"
- "I can imagine users asking for things like 'Remove the red-eye from this image' or 'Rotate this image'. Are there other ways you imagine this skill being used?"
- "What would a user say that should trigger this skill?"
To avoid overwhelming users, avoid asking too many questions in a single message. Start with the most important questions and follow up as needed for better effectiveness.
Conclude this step when there is a clear sense of the functionality the skill should support.
### Step 2: Planning the Reusable Skill Contents
To turn concrete examples into an effective skill, analyze each example by:
1. Considering how to execute on the example from scratch
2. Identifying what scripts, references, and assets would be helpful when executing these workflows repeatedly
Example: When building a `pdf-editor` skill to handle queries like "Help me rotate this PDF," the analysis shows:
1. Rotating a PDF requires re-writing the same code each time
2. A `scripts/rotate_pdf.py` script would be helpful to store in the skill
Example: When designing a `frontend-webapp-builder` skill for queries like "Build me a todo app" or "Build me a dashboard to track my steps," the analysis shows:
1. Writing a frontend webapp requires the same boilerplate HTML/React each time
2. An `assets/hello-world/` template containing the boilerplate HTML/React project files would be helpful to store in the skill
Example: When building a `big-query` skill to handle queries like "How many users have logged in today?" the analysis shows:
1. Querying BigQuery requires re-discovering the table schemas and relationships each time
2. A `references/schema.md` file documenting the table schemas would be helpful to store in the skill
To establish the skill's contents, analyze each concrete example to create a list of the reusable resources to include: scripts, references, and assets.
### Step 3: Initializing the Skill
At this point, it is time to actually create the skill.
Skip this step only if the skill being developed already exists, and iteration or packaging is needed. In this case, continue to the next step.
When creating a new skill from scratch, always run the `init_skill.py` script. The script conveniently generates a new template skill directory that automatically includes everything a skill requires, making the skill creation process much more efficient and reliable.
Usage:
```bash
scripts/init_skill.py <skill-name> --path <output-directory> [--resources scripts,references,assets] [--examples]
```
Examples:
```bash
scripts/init_skill.py my-skill --path skills/public
scripts/init_skill.py my-skill --path skills/public --resources scripts,references
scripts/init_skill.py my-skill --path skills/public --resources scripts --examples
```
The script:
- Creates the skill directory at the specified path
- Generates a SKILL.md template with proper frontmatter and TODO placeholders
- Optionally creates resource directories based on `--resources`
- Optionally adds example files when `--examples` is set
After initialization, customize the SKILL.md and add resources as needed. If you used `--examples`, replace or delete placeholder files.
### Step 4: Edit the Skill
When editing the (newly-generated or existing) skill, remember that the skill is being created for another instance of Codex to use. Include information that would be beneficial and non-obvious to Codex. Consider what procedural knowledge, domain-specific details, or reusable assets would help another Codex instance execute these tasks more effectively.
#### Learn Proven Design Patterns
Consult these helpful guides based on your skill's needs:
- **Multi-step processes**: See references/workflows.md for sequential workflows and conditional logic
- **Specific output formats or quality standards**: See references/output-patterns.md for template and example patterns
These files contain established best practices for effective skill design.
#### Start with Reusable Skill Contents
To begin implementation, start with the reusable resources identified above: `scripts/`, `references/`, and `assets/` files. Note that this step may require user input. For example, when implementing a `brand-guidelines` skill, the user may need to provide brand assets or templates to store in `assets/`, or documentation to store in `references/`.
Added scripts must be tested by actually running them to ensure there are no bugs and that the output matches what is expected. If there are many similar scripts, only a representative sample needs to be tested to ensure confidence that they all work while balancing time to completion.
If you used `--examples`, delete any placeholder files that are not needed for the skill. Only create resource directories that are actually required.
#### Update SKILL.md
**Writing Guidelines:** Always use imperative/infinitive form.
##### Frontmatter
Write the YAML frontmatter with `name` and `description`:
- `name`: The skill name
- `description`: This is the primary triggering mechanism for your skill, and helps Codex understand when to use the skill.
- Include both what the Skill does and specific triggers/contexts for when to use it.
- Include all "when to use" information here - Not in the body. The body is only loaded after triggering, so "When to Use This Skill" sections in the body are not helpful to Codex.
- Example description for a `docx` skill: "Comprehensive document creation, editing, and analysis with support for tracked changes, comments, formatting preservation, and text extraction. Use when Codex needs to work with professional documents (.docx files) for: (1) Creating new documents, (2) Modifying or editing content, (3) Working with tracked changes, (4) Adding comments, or any other document tasks"
Do not include any other fields in YAML frontmatter.
##### Body
Write instructions for using the skill and its bundled resources.
### Step 5: Packaging a Skill
Once development of the skill is complete, it must be packaged into a distributable .skill file that gets shared with the user. The packaging process automatically validates the skill first to ensure it meets all requirements:
```bash
scripts/package_skill.py <path/to/skill-folder>
```
Optional output directory specification:
```bash
scripts/package_skill.py <path/to/skill-folder> ./dist
```
The packaging script will:
1. **Validate** the skill automatically, checking:
- YAML frontmatter format and required fields
- Skill naming conventions and directory structure
- Description completeness and quality
- File organization and resource references
2. **Package** the skill if validation passes, creating a .skill file named after the skill (e.g., `my-skill.skill`) that includes all files and maintains the proper directory structure for distribution. The .skill file is a zip file with a .skill extension.
If validation fails, the script will report the errors and exit without creating a package. Fix any validation errors and run the packaging command again.
### Step 6: Iterate
After testing the skill, users may request improvements. Often this happens right after using the skill, with fresh context of how the skill performed.
**Iteration workflow:**
1. Use the skill on real tasks
2. Notice struggles or inefficiencies
3. Identify how SKILL.md or bundled resources should be updated
4. Implement changes and test again

View File

@@ -0,0 +1,67 @@
---
name: summarize
description: Summarize or extract text/transcripts from URLs, podcasts, and local files (great fallback for “transcribe this YouTube/video”).
homepage: https://summarize.sh
metadata: {"openclaw":{"emoji":"🧾","requires":{"bins":["summarize"]},"install":[{"id":"brew","kind":"brew","formula":"steipete/tap/summarize","bins":["summarize"],"label":"Install summarize (brew)"}]}}
---
# Summarize
Fast CLI to summarize URLs, local files, and YouTube links.
## When to use (trigger phrases)
Use this skill immediately when the user asks any of:
- “use summarize.sh”
- “whats this link/video about?”
- “summarize this URL/article”
- “transcribe this YouTube/video” (best-effort transcript extraction; no `yt-dlp` needed)
## Quick start
```bash
summarize "https://example.com" --model google/gemini-3-flash-preview
summarize "/path/to/file.pdf" --model google/gemini-3-flash-preview
summarize "https://youtu.be/dQw4w9WgXcQ" --youtube auto
```
## YouTube: summary vs transcript
Best-effort transcript (URLs only):
```bash
summarize "https://youtu.be/dQw4w9WgXcQ" --youtube auto --extract-only
```
If the user asked for a transcript but its huge, return a tight summary first, then ask which section/time range to expand.
## Model + keys
Set the API key for your chosen provider:
- OpenAI: `OPENAI_API_KEY`
- Anthropic: `ANTHROPIC_API_KEY`
- xAI: `XAI_API_KEY`
- Google: `GEMINI_API_KEY` (aliases: `GOOGLE_GENERATIVE_AI_API_KEY`, `GOOGLE_API_KEY`)
Default model is `google/gemini-3-flash-preview` if none is set.
## Useful flags
- `--length short|medium|long|xl|xxl|<chars>`
- `--max-output-tokens <count>`
- `--extract-only` (URLs only)
- `--json` (machine readable)
- `--firecrawl auto|off|always` (fallback extraction)
- `--youtube auto` (Apify fallback if `APIFY_API_TOKEN` set)
## Config
Optional config file: `~/.summarize/config.json`
```json
{ "model": "openai/gpt-5.2" }
```
Optional services:
- `FIRECRAWL_API_KEY` for blocked sites
- `APIFY_API_TOKEN` for YouTube fallback

View File

@@ -0,0 +1,121 @@
---
name: tmux
description: Remote-control tmux sessions for interactive CLIs by sending keystrokes and scraping pane output.
metadata: {"openclaw":{"emoji":"🧵","os":["darwin","linux"],"requires":{"bins":["tmux"]}}}
---
# tmux Skill (OpenClaw)
Use tmux only when you need an interactive TTY. Prefer exec background mode for long-running, non-interactive tasks.
## Quickstart (isolated socket, exec tool)
```bash
SOCKET_DIR="${OPENCLAW_TMUX_SOCKET_DIR:-${CLAWDBOT_TMUX_SOCKET_DIR:-${TMPDIR:-/tmp}/openclaw-tmux-sockets}}"
mkdir -p "$SOCKET_DIR"
SOCKET="$SOCKET_DIR/openclaw.sock"
SESSION=openclaw-python
tmux -S "$SOCKET" new -d -s "$SESSION" -n shell
tmux -S "$SOCKET" send-keys -t "$SESSION":0.0 -- 'PYTHON_BASIC_REPL=1 python3 -q' Enter
tmux -S "$SOCKET" capture-pane -p -J -t "$SESSION":0.0 -S -200
```
After starting a session, always print monitor commands:
```
To monitor:
tmux -S "$SOCKET" attach -t "$SESSION"
tmux -S "$SOCKET" capture-pane -p -J -t "$SESSION":0.0 -S -200
```
## Socket convention
- Use `OPENCLAW_TMUX_SOCKET_DIR` (legacy `CLAWDBOT_TMUX_SOCKET_DIR` also supported).
- Default socket path: `"$OPENCLAW_TMUX_SOCKET_DIR/openclaw.sock"`.
## Targeting panes and naming
- Target format: `session:window.pane` (defaults to `:0.0`).
- Keep names short; avoid spaces.
- Inspect: `tmux -S "$SOCKET" list-sessions`, `tmux -S "$SOCKET" list-panes -a`.
## Finding sessions
- List sessions on your socket: `{baseDir}/scripts/find-sessions.sh -S "$SOCKET"`.
- Scan all sockets: `{baseDir}/scripts/find-sessions.sh --all` (uses `OPENCLAW_TMUX_SOCKET_DIR`).
## Sending input safely
- Prefer literal sends: `tmux -S "$SOCKET" send-keys -t target -l -- "$cmd"`.
- Control keys: `tmux -S "$SOCKET" send-keys -t target C-c`.
## Watching output
- Capture recent history: `tmux -S "$SOCKET" capture-pane -p -J -t target -S -200`.
- Wait for prompts: `{baseDir}/scripts/wait-for-text.sh -t session:0.0 -p 'pattern'`.
- Attaching is OK; detach with `Ctrl+b d`.
## Spawning processes
- For python REPLs, set `PYTHON_BASIC_REPL=1` (non-basic REPL breaks send-keys flows).
## Windows / WSL
- tmux is supported on macOS/Linux. On Windows, use WSL and install tmux inside WSL.
- This skill is gated to `darwin`/`linux` and requires `tmux` on PATH.
## Orchestrating Coding Agents (Codex, Claude Code)
tmux excels at running multiple coding agents in parallel:
```bash
SOCKET="${TMPDIR:-/tmp}/codex-army.sock"
# Create multiple sessions
for i in 1 2 3 4 5; do
tmux -S "$SOCKET" new-session -d -s "agent-$i"
done
# Launch agents in different workdirs
tmux -S "$SOCKET" send-keys -t agent-1 "cd /tmp/project1 && codex --yolo 'Fix bug X'" Enter
tmux -S "$SOCKET" send-keys -t agent-2 "cd /tmp/project2 && codex --yolo 'Fix bug Y'" Enter
# Poll for completion (check if prompt returned)
for sess in agent-1 agent-2; do
if tmux -S "$SOCKET" capture-pane -p -t "$sess" -S -3 | grep -q ""; then
echo "$sess: DONE"
else
echo "$sess: Running..."
fi
done
# Get full output from completed session
tmux -S "$SOCKET" capture-pane -p -t agent-1 -S -500
```
**Tips:**
- Use separate git worktrees for parallel fixes (no branch conflicts)
- `pnpm install` first before running codex in fresh clones
- Check for shell prompt (`` or `$`) to detect completion
- Codex needs `--yolo` or `--full-auto` for non-interactive fixes
## Cleanup
- Kill a session: `tmux -S "$SOCKET" kill-session -t "$SESSION"`.
- Kill all sessions on a socket: `tmux -S "$SOCKET" list-sessions -F '#{session_name}' | xargs -r -n1 tmux -S "$SOCKET" kill-session -t`.
- Remove everything on the private socket: `tmux -S "$SOCKET" kill-server`.
## Helper: wait-for-text.sh
`{baseDir}/scripts/wait-for-text.sh` polls a pane for a regex (or fixed string) with a timeout.
```bash
{baseDir}/scripts/wait-for-text.sh -t session:0.0 -p 'pattern' [-F] [-T 20] [-i 0.5] [-l 2000]
```
- `-t`/`--target` pane target (required)
- `-p`/`--pattern` regex to match (required); add `-F` for fixed string
- `-T` timeout seconds (integer, default 15)
- `-i` poll interval seconds (default 0.5)
- `-l` history lines to search (integer, default 1000)

View File

@@ -0,0 +1,112 @@
#!/usr/bin/env bash
set -euo pipefail
usage() {
cat <<'USAGE'
Usage: find-sessions.sh [-L socket-name|-S socket-path|-A] [-q pattern]
List tmux sessions on a socket (default tmux socket if none provided).
Options:
-L, --socket tmux socket name (passed to tmux -L)
-S, --socket-path tmux socket path (passed to tmux -S)
-A, --all scan all sockets under OPENCLAW_TMUX_SOCKET_DIR
-q, --query case-insensitive substring to filter session names
-h, --help show this help
USAGE
}
socket_name=""
socket_path=""
query=""
scan_all=false
socket_dir="${OPENCLAW_TMUX_SOCKET_DIR:-${CLAWDBOT_TMUX_SOCKET_DIR:-${TMPDIR:-/tmp}/openclaw-tmux-sockets}}"
while [[ $# -gt 0 ]]; do
case "$1" in
-L|--socket) socket_name="${2-}"; shift 2 ;;
-S|--socket-path) socket_path="${2-}"; shift 2 ;;
-A|--all) scan_all=true; shift ;;
-q|--query) query="${2-}"; shift 2 ;;
-h|--help) usage; exit 0 ;;
*) echo "Unknown option: $1" >&2; usage; exit 1 ;;
esac
done
if [[ "$scan_all" == true && ( -n "$socket_name" || -n "$socket_path" ) ]]; then
echo "Cannot combine --all with -L or -S" >&2
exit 1
fi
if [[ -n "$socket_name" && -n "$socket_path" ]]; then
echo "Use either -L or -S, not both" >&2
exit 1
fi
if ! command -v tmux >/dev/null 2>&1; then
echo "tmux not found in PATH" >&2
exit 1
fi
list_sessions() {
local label="$1"; shift
local tmux_cmd=(tmux "$@")
if ! sessions="$("${tmux_cmd[@]}" list-sessions -F '#{session_name}\t#{session_attached}\t#{session_created_string}' 2>/dev/null)"; then
echo "No tmux server found on $label" >&2
return 1
fi
if [[ -n "$query" ]]; then
sessions="$(printf '%s\n' "$sessions" | grep -i -- "$query" || true)"
fi
if [[ -z "$sessions" ]]; then
echo "No sessions found on $label"
return 0
fi
echo "Sessions on $label:"
printf '%s\n' "$sessions" | while IFS=$'\t' read -r name attached created; do
attached_label=$([[ "$attached" == "1" ]] && echo "attached" || echo "detached")
printf ' - %s (%s, started %s)\n' "$name" "$attached_label" "$created"
done
}
if [[ "$scan_all" == true ]]; then
if [[ ! -d "$socket_dir" ]]; then
echo "Socket directory not found: $socket_dir" >&2
exit 1
fi
shopt -s nullglob
sockets=("$socket_dir"/*)
shopt -u nullglob
if [[ "${#sockets[@]}" -eq 0 ]]; then
echo "No sockets found under $socket_dir" >&2
exit 1
fi
exit_code=0
for sock in "${sockets[@]}"; do
if [[ ! -S "$sock" ]]; then
continue
fi
list_sessions "socket path '$sock'" -S "$sock" || exit_code=$?
done
exit "$exit_code"
fi
tmux_cmd=(tmux)
socket_label="default socket"
if [[ -n "$socket_name" ]]; then
tmux_cmd+=(-L "$socket_name")
socket_label="socket name '$socket_name'"
elif [[ -n "$socket_path" ]]; then
tmux_cmd+=(-S "$socket_path")
socket_label="socket path '$socket_path'"
fi
list_sessions "$socket_label" "${tmux_cmd[@]:1}"

View File

@@ -0,0 +1,83 @@
#!/usr/bin/env bash
set -euo pipefail
usage() {
cat <<'USAGE'
Usage: wait-for-text.sh -t target -p pattern [options]
Poll a tmux pane for text and exit when found.
Options:
-t, --target tmux target (session:window.pane), required
-p, --pattern regex pattern to look for, required
-F, --fixed treat pattern as a fixed string (grep -F)
-T, --timeout seconds to wait (integer, default: 15)
-i, --interval poll interval in seconds (default: 0.5)
-l, --lines number of history lines to inspect (integer, default: 1000)
-h, --help show this help
USAGE
}
target=""
pattern=""
grep_flag="-E"
timeout=15
interval=0.5
lines=1000
while [[ $# -gt 0 ]]; do
case "$1" in
-t|--target) target="${2-}"; shift 2 ;;
-p|--pattern) pattern="${2-}"; shift 2 ;;
-F|--fixed) grep_flag="-F"; shift ;;
-T|--timeout) timeout="${2-}"; shift 2 ;;
-i|--interval) interval="${2-}"; shift 2 ;;
-l|--lines) lines="${2-}"; shift 2 ;;
-h|--help) usage; exit 0 ;;
*) echo "Unknown option: $1" >&2; usage; exit 1 ;;
esac
done
if [[ -z "$target" || -z "$pattern" ]]; then
echo "target and pattern are required" >&2
usage
exit 1
fi
if ! [[ "$timeout" =~ ^[0-9]+$ ]]; then
echo "timeout must be an integer number of seconds" >&2
exit 1
fi
if ! [[ "$lines" =~ ^[0-9]+$ ]]; then
echo "lines must be an integer" >&2
exit 1
fi
if ! command -v tmux >/dev/null 2>&1; then
echo "tmux not found in PATH" >&2
exit 1
fi
# End time in epoch seconds (integer, good enough for polling)
start_epoch=$(date +%s)
deadline=$((start_epoch + timeout))
while true; do
# -J joins wrapped lines, -S uses negative index to read last N lines
pane_text="$(tmux capture-pane -p -J -t "$target" -S "-${lines}" 2>/dev/null || true)"
if printf '%s\n' "$pane_text" | grep $grep_flag -- "$pattern" >/dev/null 2>&1; then
exit 0
fi
now=$(date +%s)
if (( now >= deadline )); then
echo "Timed out after ${timeout}s waiting for pattern: $pattern" >&2
echo "Last ${lines} lines from $target:" >&2
printf '%s\n' "$pane_text" >&2
exit 1
fi
sleep "$interval"
done

View File

@@ -0,0 +1,49 @@
---
name: weather
description: Get current weather and forecasts (no API key required).
homepage: https://wttr.in/:help
metadata: {"openclaw":{"emoji":"🌤️","requires":{"bins":["curl"]}}}
---
# Weather
Two free services, no API keys needed.
## wttr.in (primary)
Quick one-liner:
```bash
curl -s "wttr.in/London?format=3"
# Output: London: ⛅️ +8°C
```
Compact format:
```bash
curl -s "wttr.in/London?format=%l:+%c+%t+%h+%w"
# Output: London: ⛅️ +8°C 71% ↙5km/h
```
Full forecast:
```bash
curl -s "wttr.in/London?T"
```
Format codes: `%c` condition · `%t` temp · `%h` humidity · `%w` wind · `%l` location · `%m` moon
Tips:
- URL-encode spaces: `wttr.in/New+York`
- Airport codes: `wttr.in/JFK`
- Units: `?m` (metric) `?u` (USCS)
- Today only: `?1` · Current only: `?0`
- PNG: `curl -s "wttr.in/Berlin.png" -o /tmp/weather.png`
## Open-Meteo (fallback, JSON)
Free, no key, good for programmatic use:
```bash
curl -s "https://api.open-meteo.com/v1/forecast?latitude=51.5&longitude=-0.12&current_weather=true"
```
Find coordinates for a city, then query. Returns JSON with temp, windspeed, weathercode.
Docs: https://open-meteo.com/en/docs

View File

@@ -0,0 +1,5 @@
"""Utility functions for nanobot."""
from nanobot.utils.helpers import ensure_dir, get_workspace_path, get_data_path
__all__ = ["ensure_dir", "get_workspace_path", "get_data_path"]

91
nanobot/utils/helpers.py Normal file
View File

@@ -0,0 +1,91 @@
"""Utility functions for nanobot."""
from pathlib import Path
from datetime import datetime
def ensure_dir(path: Path) -> Path:
"""Ensure a directory exists, creating it if necessary."""
path.mkdir(parents=True, exist_ok=True)
return path
def get_data_path() -> Path:
"""Get the nanobot data directory (~/.nanobot)."""
return ensure_dir(Path.home() / ".nanobot")
def get_workspace_path(workspace: str | None = None) -> Path:
"""
Get the workspace path.
Args:
workspace: Optional workspace path. Defaults to ~/.nanobot/workspace.
Returns:
Expanded and ensured workspace path.
"""
if workspace:
path = Path(workspace).expanduser()
else:
path = Path.home() / ".nanobot" / "workspace"
return ensure_dir(path)
def get_sessions_path() -> Path:
"""Get the sessions storage directory."""
return ensure_dir(get_data_path() / "sessions")
def get_memory_path(workspace: Path | None = None) -> Path:
"""Get the memory directory within the workspace."""
ws = workspace or get_workspace_path()
return ensure_dir(ws / "memory")
def get_skills_path(workspace: Path | None = None) -> Path:
"""Get the skills directory within the workspace."""
ws = workspace or get_workspace_path()
return ensure_dir(ws / "skills")
def today_date() -> str:
"""Get today's date in YYYY-MM-DD format."""
return datetime.now().strftime("%Y-%m-%d")
def timestamp() -> str:
"""Get current timestamp in ISO format."""
return datetime.now().isoformat()
def truncate_string(s: str, max_len: int = 100, suffix: str = "...") -> str:
"""Truncate a string to max length, adding suffix if truncated."""
if len(s) <= max_len:
return s
return s[: max_len - len(suffix)] + suffix
def safe_filename(name: str) -> str:
"""Convert a string to a safe filename."""
# Replace unsafe characters
unsafe = '<>:"/\\|?*'
for char in unsafe:
name = name.replace(char, "_")
return name.strip()
def parse_session_key(key: str) -> tuple[str, str]:
"""
Parse a session key into channel and chat_id.
Args:
key: Session key in format "channel:chat_id"
Returns:
Tuple of (channel, chat_id)
"""
parts = key.split(":", 1)
if len(parts) != 2:
raise ValueError(f"Invalid session key: {key}")
return parts[0], parts[1]

BIN
nanobot_arch.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 628 KiB

BIN
nanobot_logo.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 352 KiB

83
pyproject.toml Normal file
View File

@@ -0,0 +1,83 @@
[project]
name = "nanobot-ai"
version = "0.1.3.post1"
description = "A lightweight personal AI assistant framework"
requires-python = ">=3.11"
license = {text = "MIT"}
authors = [
{name = "nanobot contributors"}
]
keywords = ["ai", "agent", "chatbot"]
classifiers = [
"Development Status :: 3 - Alpha",
"Intended Audience :: Developers",
"License :: OSI Approved :: MIT License",
"Programming Language :: Python :: 3.11",
"Programming Language :: Python :: 3.12",
]
dependencies = [
"typer>=0.9.0",
"litellm>=1.0.0",
"pydantic>=2.0.0",
"pydantic-settings>=2.0.0",
"websockets>=12.0",
"websocket-client>=1.6.0",
"httpx>=0.25.0",
"loguru>=0.7.0",
"readability-lxml>=0.8.0",
"rich>=13.0.0",
"croniter>=2.0.0",
"python-telegram-bot>=21.0",
]
[project.optional-dependencies]
dev = [
"pytest>=7.0.0",
"pytest-asyncio>=0.21.0",
"ruff>=0.1.0",
]
[project.scripts]
nanobot = "nanobot.cli.commands:app"
[build-system]
requires = ["hatchling"]
build-backend = "hatchling.build"
[tool.hatch.build.targets.wheel]
packages = ["nanobot"]
[tool.hatch.build.targets.wheel.sources]
"nanobot" = "nanobot"
# Include non-Python files in skills
[tool.hatch.build]
include = [
"nanobot/**/*.py",
"nanobot/skills/**/*.md",
"nanobot/skills/**/*.sh",
]
[tool.hatch.build.targets.sdist]
include = [
"nanobot/",
"bridge/",
"README.md",
"LICENSE",
]
[tool.hatch.build.targets.wheel.force-include]
"bridge" = "nanobot/bridge"
[tool.ruff]
line-length = 100
target-version = "py311"
[tool.ruff.lint]
select = ["E", "F", "I", "N", "W"]
ignore = ["E501"]
[tool.pytest.ini_options]
asyncio_mode = "auto"
testpaths = ["tests"]

40
workspace/AGENTS.md Normal file
View File

@@ -0,0 +1,40 @@
# Agent Instructions
You are a helpful AI assistant. Be concise, accurate, and friendly.
## Guidelines
- Always explain what you're doing before taking actions
- Ask for clarification when the request is ambiguous
- Use tools to help accomplish tasks
- Remember important information in your memory files
## Tools Available
You have access to:
- File operations (read, write, edit, list)
- Shell commands (exec)
- Web access (search, fetch)
- Messaging (message)
## Memory
- Use `memory/` directory for daily notes
- Use `MEMORY.md` for long-term information
## Heartbeat Tasks
`HEARTBEAT.md` is checked every 30 minutes. You can manage periodic tasks by editing this file:
- **Add a task**: Use `edit_file` to append new tasks to `HEARTBEAT.md`
- **Remove a task**: Use `edit_file` to remove completed or obsolete tasks
- **Rewrite tasks**: Use `write_file` to completely rewrite the task list
Task format examples:
```
- [ ] Check calendar and remind of upcoming events
- [ ] Scan inbox for urgent emails
- [ ] Check weather forecast for today
```
When the user asks you to add a recurring/periodic task, update `HEARTBEAT.md` instead of creating a one-time reminder. Keep the file small to minimize token usage.

16
workspace/HEARTBEAT.md Normal file
View File

@@ -0,0 +1,16 @@
# Heartbeat Tasks
This file is checked every 30 minutes by your nanobot agent.
Add tasks below that you want the agent to work on periodically.
If this file has no tasks (only headers and comments), the agent will skip the heartbeat.
## Active Tasks
<!-- Add your periodic tasks below this line -->
## Completed
<!-- Move completed tasks here or delete them -->

21
workspace/SOUL.md Normal file
View File

@@ -0,0 +1,21 @@
# Soul
I am nanobot 🐈, a personal AI assistant.
## Personality
- Helpful and friendly
- Concise and to the point
- Curious and eager to learn
## Values
- Accuracy over speed
- User privacy and safety
- Transparency in actions
## Communication Style
- Be clear and direct
- Explain reasoning when helpful
- Ask clarifying questions when needed

138
workspace/TOOLS.md Normal file
View File

@@ -0,0 +1,138 @@
# Available Tools
This document describes the tools available to nanobot.
## File Operations
### read_file
Read the contents of a file.
```
read_file(path: str) -> str
```
### write_file
Write content to a file (creates parent directories if needed).
```
write_file(path: str, content: str) -> str
```
### edit_file
Edit a file by replacing specific text.
```
edit_file(path: str, old_text: str, new_text: str) -> str
```
### list_dir
List contents of a directory.
```
list_dir(path: str) -> str
```
## Shell Execution
### exec
Execute a shell command and return output.
```
exec(command: str, working_dir: str = None) -> str
```
**Safety Notes:**
- Commands have a 60-second timeout
- Output is truncated at 10,000 characters
- Use with caution for destructive operations
## Web Access
### web_search
Search the web using DuckDuckGo.
```
web_search(query: str) -> str
```
Returns top 5 search results with titles, URLs, and snippets.
### web_fetch
Fetch and extract main content from a URL.
```
web_fetch(url: str) -> str
```
**Notes:**
- Content is extracted using trafilatura
- Output is truncated at 8,000 characters
## Communication
### message
Send a message to the user (used internally).
```
message(content: str, channel: str = None, chat_id: str = None) -> str
```
## Scheduled Reminders (Cron)
Use the `exec` tool to create scheduled reminders with `nanobot cron add`:
### Set a recurring reminder
```bash
# Every day at 9am
nanobot cron add --name "morning" --message "Good morning! ☀️" --cron "0 9 * * *"
# Every 2 hours
nanobot cron add --name "water" --message "Drink water! 💧" --every 7200
```
### Set a one-time reminder
```bash
# At a specific time (ISO format)
nanobot cron add --name "meeting" --message "Meeting starts now!" --at "2025-01-31T15:00:00"
```
### Manage reminders
```bash
nanobot cron list # List all jobs
nanobot cron remove <job_id> # Remove a job
```
## Heartbeat Task Management
The `HEARTBEAT.md` file in the workspace is checked every 30 minutes.
Use file operations to manage periodic tasks:
### Add a heartbeat task
```python
# Append a new task
edit_file(
path="HEARTBEAT.md",
old_text="## Example Tasks",
new_text="- [ ] New periodic task here\n\n## Example Tasks"
)
```
### Remove a heartbeat task
```python
# Remove a specific task
edit_file(
path="HEARTBEAT.md",
old_text="- [ ] Task to remove\n",
new_text=""
)
```
### Rewrite all tasks
```python
# Replace the entire file
write_file(
path="HEARTBEAT.md",
content="# Heartbeat Tasks\n\n- [ ] Task 1\n- [ ] Task 2\n"
)
```
---
## Adding Custom Tools
To add custom tools:
1. Create a class that extends `Tool` in `nanobot/agent/tools/`
2. Implement `name`, `description`, `parameters`, and `execute`
3. Register it in `AgentLoop._register_default_tools()`

49
workspace/USER.md Normal file
View File

@@ -0,0 +1,49 @@
# User Profile
Information about the user to help personalize interactions.
## Basic Information
- **Name**: (your name)
- **Timezone**: (your timezone, e.g., UTC+8)
- **Language**: (preferred language)
## Preferences
### Communication Style
- [ ] Casual
- [ ] Professional
- [ ] Technical
### Response Length
- [ ] Brief and concise
- [ ] Detailed explanations
- [ ] Adaptive based on question
### Technical Level
- [ ] Beginner
- [ ] Intermediate
- [ ] Expert
## Work Context
- **Primary Role**: (your role, e.g., developer, researcher)
- **Main Projects**: (what you're working on)
- **Tools You Use**: (IDEs, languages, frameworks)
## Topics of Interest
-
-
-
## Special Instructions
(Any specific instructions for how the assistant should behave)
---
*Edit this file to customize nanobot's behavior for your needs.*

View File

@@ -0,0 +1,23 @@
# Long-term Memory
This file stores important information that should persist across sessions.
## User Information
(Important facts about the user)
## Preferences
(User preferences learned over time)
## Project Context
(Information about ongoing projects)
## Important Notes
(Things to remember)
---
*This file is automatically updated by nanobot when important information should be remembered.*