mirror of
https://github.com/space-wizards/RobustToolbox.git
synced 2026-02-14 19:29:36 +01:00
* Box Simd * Add 256 bit version of GetAABB * Add AABB bechmarks * No real diff between 128 & 256, so removing 256 | Method | Mean | Error | StdDev | Ratio | |----------- |----------:|----------:|----------:|------:| | GetAABB | 5.8107 ns | 0.0154 ns | 0.0137 ns | 1.00 | | GetAABB128 | 0.4927 ns | 0.0003 ns | 0.0002 ns | 0.08 | | GetAABB256 | 0.4332 ns | 0.0006 ns | 0.0006 ns | 0.07 | * Add Box2Rotated.Transform Benchmark * Results 20% faster and much smaller code. Also I don't think it inlined RotateVec * Add Matrix3x2Helper.TransformBox() benchmark new: | Method | Mean | Error | StdDev | Code Size | |---------- |---------:|----------:|----------:|----------:| | Transform | 2.463 ns | 0.0766 ns | 0.0679 ns | 216 B | old: | Method | Mean | Error | StdDev | Median | Code Size | |---------- |---------:|----------:|----------:|---------:|----------:| | Transform | 9.469 ns | 0.2140 ns | 0.5408 ns | 9.206 ns | 621 B | * Fix polygon constructor * SlimPolygonBenchmark * use new SimdHelper for other methods * Fix bugs * Use new methods * Simd SlimPolygon.ComputeAABB * Move simd transform to physics * Cleanup * Remove uneccesary Unsafe.SkipInit * These tests all work on master * Add Transform.MulSimd test * Add SlimPolygon constructor tests * Add ComputeAABB test --------- Co-authored-by: metalgearsloth <31366439+metalgearsloth@users.noreply.github.com>
231 lines
7.7 KiB
C#
231 lines
7.7 KiB
C#
using System;
|
|
using System.Numerics;
|
|
using System.Runtime.CompilerServices;
|
|
using System.Runtime.Intrinsics;
|
|
|
|
namespace Robust.Shared.Maths;
|
|
|
|
public static class Matrix3Helpers
|
|
{
|
|
public static bool EqualsApprox(this Matrix3x2 a, Matrix3x2 b, float tolerance = 1e-6f)
|
|
{
|
|
return
|
|
Math.Abs(a.M11 - b.M11) <= tolerance &&
|
|
Math.Abs(a.M12 - b.M12) <= tolerance &&
|
|
Math.Abs(a.M21 - b.M21) <= tolerance &&
|
|
Math.Abs(a.M22 - b.M22) <= tolerance &&
|
|
Math.Abs(a.M31 - b.M31) <= tolerance &&
|
|
Math.Abs(a.M32 - b.M32) <= tolerance;
|
|
}
|
|
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static bool EqualsApprox(this Matrix3x2 a, Matrix3x2 b, double tolerance)
|
|
{
|
|
return a.EqualsApprox(b, (float) tolerance);
|
|
}
|
|
|
|
[Obsolete("Use TransformBox")]
|
|
// This method was previously broken, and now just returns an bounding box pretending to be a Box2Rotated
|
|
public static Box2Rotated TransformBounds(this Matrix3x2 refFromBox, Box2Rotated box)
|
|
{
|
|
return new Box2Rotated(TransformBox(refFromBox, box));
|
|
}
|
|
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static Box2 TransformBox(this Matrix3x2 refFromBox, in Box2Rotated box)
|
|
{
|
|
return (box.Transform * refFromBox).TransformBox(box.Box);
|
|
}
|
|
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
internal static void TransformBox(
|
|
this Matrix3x2 refFromBox,
|
|
in Box2Rotated box,
|
|
out Vector128<float> x,
|
|
out Vector128<float> y)
|
|
{
|
|
(box.Transform * refFromBox).TransformBox(box.Box, out x, out y);
|
|
}
|
|
|
|
public static Box2 TransformBox(this Matrix3x2 refFromBox, in Box2 box)
|
|
{
|
|
TransformBox(refFromBox, box, out var x, out var y);
|
|
var aabb = SimdHelpers.GetAABB(x, y);
|
|
return Unsafe.As<Vector128<float>, Box2>(ref aabb);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Applies a transformation matrix to all of a box's corners and returns their coordinates in two simd vectors.
|
|
/// </summary>
|
|
/// <remarks>The corners are ordered clockwise, starting from what was the bottom left corner prior to the transformation.</remarks>
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
internal static void TransformBox(
|
|
this Matrix3x2 refFromBox,
|
|
in Box2 box,
|
|
out Vector128<float> x,
|
|
out Vector128<float> y)
|
|
{
|
|
var boxVec = Unsafe.As<Box2, Vector128<float>>(ref Unsafe.AsRef(in box));
|
|
|
|
// Convert box into list of X and Y values for each of the 4 corners
|
|
var boxX = Vector128.Shuffle(boxVec, Vector128.Create(0, 2, 2, 0));
|
|
var boxY = Vector128.Shuffle(boxVec, Vector128.Create(1, 1, 3, 3));
|
|
|
|
// Transform coordinates
|
|
x = Vector128.Create(refFromBox.M31)
|
|
+ boxX * Vector128.Create(refFromBox.M11)
|
|
+ boxY * Vector128.Create(refFromBox.M21);
|
|
y = Vector128.Create(refFromBox.M32)
|
|
+ boxX * Vector128.Create(refFromBox.M12)
|
|
+ boxY * Vector128.Create(refFromBox.M22);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Gets the rotation of the Matrix. Will have some precision loss.
|
|
/// </summary>
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static Angle Rotation(this Matrix3x2 t)
|
|
{
|
|
return new Angle(Math.Atan2(t.M12, t.M11));
|
|
}
|
|
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static Matrix3x2 CreateTransform(float posX, float posY, double angle)
|
|
{
|
|
// returns a matrix that is equivalent to returning CreateRotation(angle) * CreateTranslation(posX, posY)
|
|
var sin = (float) Math.Sin(angle);
|
|
var cos = (float) Math.Cos(angle);
|
|
return new Matrix3x2
|
|
{
|
|
M11 = cos,
|
|
M21 = -sin,
|
|
M31 = posX,
|
|
M12 = sin,
|
|
M22 = cos,
|
|
M32 = posY,
|
|
};
|
|
}
|
|
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static Matrix3x2 CreateTransform(float posX, float posY, double angle, float scaleX = 1, float scaleY = 1)
|
|
{
|
|
// returns a matrix that is equivalent to returning CreateScale(scale) * CreateRotation(angle) * CreateTranslation(posX, posY)
|
|
|
|
var sin = (float) Math.Sin(angle);
|
|
var cos = (float) Math.Cos(angle);
|
|
|
|
return new Matrix3x2
|
|
{
|
|
M11 = cos * scaleX,
|
|
M21 = -sin * scaleY,
|
|
M31 = posX,
|
|
M12 = sin * scaleX,
|
|
M22 = cos * scaleY,
|
|
M32 = posY,
|
|
};
|
|
}
|
|
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static Matrix3x2 CreateTransform(in Vector2 position, in Angle angle)
|
|
{
|
|
// Rounding moment
|
|
return angle.Theta switch
|
|
{
|
|
-Math.PI / 2 => new Matrix3x2(0f, -1f, 1, 0, position.X, position.Y),
|
|
Math.PI / 2 => new Matrix3x2(0f, 1f, -1f, 0f, position.X, position.Y),
|
|
Math.PI => new Matrix3x2(-1f, 0f, 0f, -1f, position.X, position.Y),
|
|
_ => CreateTransform(position.X, position.Y, (float) angle.Theta)
|
|
};
|
|
}
|
|
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static Matrix3x2 CreateTransform(in Vector2 position, in Angle angle, in Vector2 scale)
|
|
{
|
|
return CreateTransform(position.X, position.Y, (float)angle.Theta, scale.X, scale.Y);
|
|
}
|
|
|
|
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static Matrix3x2 CreateInverseTransform(float posX, float posY, double angle, float scaleX = 1, float scaleY = 1)
|
|
{
|
|
// returns a matrix that is equivalent to returning CreateTranslation(-posX, -posY) * CreateRotation(-angle) * CreateScale(1/scaleX, 1/scaleY)
|
|
|
|
var sin = (float) Math.Sin(angle);
|
|
var cos = (float) Math.Cos(angle);
|
|
|
|
return new Matrix3x2
|
|
{
|
|
M11 = cos / scaleX,
|
|
M21 = sin / scaleX,
|
|
M31 = - (posX * cos + posY * sin) / scaleX,
|
|
M12 = -sin / scaleY,
|
|
M22 = cos / scaleY,
|
|
M32 = (posX * sin - posY * cos) / scaleY,
|
|
};
|
|
}
|
|
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static Matrix3x2 CreateInverseTransform(in Vector2 position, in Angle angle)
|
|
{
|
|
return CreateInverseTransform(position.X, position.Y, (float)angle.Theta);
|
|
}
|
|
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static Matrix3x2 CreateInverseTransform(in Vector2 position, in Angle angle, in Vector2 scale)
|
|
{
|
|
return CreateInverseTransform(position.X, position.Y, (float)angle.Theta, scale.X, scale.Y);
|
|
}
|
|
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static Matrix3x2 CreateTranslation(float x, float y)
|
|
{
|
|
return new Matrix3x2 {
|
|
M11 = 1,
|
|
M12 = 0,
|
|
M21 = 0,
|
|
M22 = 1,
|
|
M31 = x,
|
|
M32 = y
|
|
};
|
|
}
|
|
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static Matrix3x2 CreateTranslation(Vector2 vector)
|
|
{
|
|
return CreateTranslation(vector.X, vector.Y);
|
|
}
|
|
|
|
public static Matrix3x2 CreateRotation(double angle)
|
|
{
|
|
var cos = (float) Math.Cos(angle);
|
|
var sin = (float) Math.Sin(angle);
|
|
return new Matrix3x2 {
|
|
M11 = cos,
|
|
M12 = sin,
|
|
M21 = -sin,
|
|
M22 = cos,
|
|
M31 = 0,
|
|
M32 = 0
|
|
};
|
|
}
|
|
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static Matrix3x2 CreateScale(float x, float y)
|
|
{
|
|
return new Matrix3x2 {
|
|
M11 = x,
|
|
M12 = 0,
|
|
M21 = 0,
|
|
M22 = y,
|
|
M31 = 0,
|
|
M32 = 0
|
|
};
|
|
}
|
|
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static Matrix3x2 CreateScale(in Vector2 scale)
|
|
{
|
|
return CreateScale(scale.X, scale.Y);
|
|
}
|
|
}
|