mirror of
https://github.com/space-wizards/RobustToolbox.git
synced 2026-02-14 19:29:36 +01:00
157 lines
5.0 KiB
C#
157 lines
5.0 KiB
C#
// MIT License
|
|
|
|
// Copyright (c) 2019 Erin Catto
|
|
|
|
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
// of this software and associated documentation files (the "Software"), to deal
|
|
// in the Software without restriction, including without limitation the rights
|
|
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
// copies of the Software, and to permit persons to whom the Software is
|
|
// furnished to do so, subject to the following conditions:
|
|
|
|
// The above copyright notice and this permission notice shall be included in all
|
|
// copies or substantial portions of the Software.
|
|
|
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
// SOFTWARE.
|
|
|
|
using System.Numerics;
|
|
|
|
namespace Robust.Shared.Maths
|
|
{
|
|
public struct Matrix33
|
|
{
|
|
public Vector3 EX;
|
|
public Vector3 EY;
|
|
public Vector3 EZ;
|
|
|
|
public Matrix33(Vector3 c1, Vector3 c2, Vector3 c3)
|
|
{
|
|
EX = c1;
|
|
EY = c2;
|
|
EZ = c3;
|
|
}
|
|
|
|
public void SetZero()
|
|
{
|
|
EX = Vector3.Zero;
|
|
EY = Vector3.Zero;
|
|
EZ = Vector3.Zero;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Solve A * x = b, where b is a column vector. This is more efficient
|
|
/// than computing the inverse in one-shot cases.
|
|
/// </summary>
|
|
/// <param name="b"></param>
|
|
/// <returns></returns>
|
|
public Vector3 Solve33(Vector3 b)
|
|
{
|
|
float det = Vector3.Dot(EX, Vector3.Cross(EY, EZ));
|
|
|
|
if (det != 0.0f)
|
|
{
|
|
det = 1.0f / det;
|
|
}
|
|
|
|
Vector3 x;
|
|
x.X = det * Vector3.Dot(b, Vector3.Cross(EY, EZ));
|
|
x.Y = det * Vector3.Dot(EX, Vector3.Cross(b, EZ));
|
|
x.Z = det * Vector3.Dot(EX, Vector3.Cross(EY, b));
|
|
return x;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Solve A * x = b, where b is a column vector. This is more efficient
|
|
/// than computing the inverse in one-shot cases. Solve only the upper
|
|
/// 2-by-2 matrix equation.
|
|
/// </summary>
|
|
/// <param name="b"></param>
|
|
/// <returns></returns>
|
|
public Vector2 Solve22(Vector2 b)
|
|
{
|
|
float a11 = EX.X, a12 = EY.X, a21 = EX.Y, a22 = EY.Y;
|
|
float det = a11 * a22 - a12 * a21;
|
|
if (det != 0.0f)
|
|
{
|
|
det = 1.0f / det;
|
|
}
|
|
|
|
Vector2 x;
|
|
x.X = det * (a22 * b.X - a12 * b.Y);
|
|
x.Y = det * (a11 * b.Y - a21 * b.X);
|
|
return x;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Get the inverse of this matrix as a 2-by-2.
|
|
/// Returns the zero matrix if singular.
|
|
/// </summary>
|
|
/// <returns></returns>
|
|
public void GetInverse22(ref Matrix33 matrix)
|
|
{
|
|
float a = EX.X, b = EY.X, c = EX.Y, d = EY.Y;
|
|
float det = a * d - b * c;
|
|
if (det != 0.0f)
|
|
{
|
|
det = 1.0f / det;
|
|
}
|
|
|
|
matrix.EX.X = det * d; matrix.EY.X = -det * b; matrix.EX.Z = 0.0f;
|
|
matrix.EX.Y = -det * c; matrix.EY.Y = det * a; matrix.EY.Z = 0.0f;
|
|
matrix.EZ.X = 0.0f; matrix.EZ.Y = 0.0f; matrix.EZ.Z = 0.0f;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Get the symmetric inverse of this matrix as a 3-by-3.
|
|
/// Returns the zero matrix if singular.
|
|
/// </summary>
|
|
/// <param name="mm"></param>
|
|
public void GetSymInverse33(ref Matrix33 matrix)
|
|
{
|
|
float det = Vector3.Dot(EX, Vector3.Cross(EY, EZ));
|
|
if (det != 0.0f)
|
|
{
|
|
det = 1.0f / det;
|
|
}
|
|
|
|
float a11 = EX.X, a12 = EY.X, a13 = EZ.X;
|
|
float a22 = EY.Y, a23 = EZ.Y;
|
|
float a33 = EZ.Z;
|
|
|
|
matrix.EX.X = det * (a22 * a33 - a23 * a23);
|
|
matrix.EX.Y = det * (a13 * a23 - a12 * a33);
|
|
matrix.EX.Z = det * (a12 * a23 - a13 * a22);
|
|
|
|
matrix.EY.X = matrix.EX.Y;
|
|
matrix.EY.Y = det * (a11 * a33 - a13 * a13);
|
|
matrix.EY.Z = det * (a13 * a12 - a11 * a23);
|
|
|
|
matrix.EZ.X = matrix.EX.Z;
|
|
matrix.EZ.Y = matrix.EY.Z;
|
|
matrix.EZ.Z = det * (a11 * a22 - a12 * a12);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Multiply a matrix times a vector.
|
|
/// </summary>
|
|
public Vector3 Mul(Vector3 v)
|
|
{
|
|
return v.X * EX + v.Y * EY + v.Z * EZ;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Multiply a matrix times a vector.
|
|
/// </summary>
|
|
public Vector2 Mul22(Vector2 v)
|
|
{
|
|
return new Vector2(EX.X * v.X + EY.X * v.Y, EX.Y * v.X + EY.Y * v.Y);
|
|
}
|
|
}
|
|
}
|