// MIT License // Copyright (c) 2019 Erin Catto // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE // SOFTWARE. using System.Numerics; namespace Robust.Shared.Maths { public struct Matrix33 { public Vector3 EX; public Vector3 EY; public Vector3 EZ; public Matrix33(Vector3 c1, Vector3 c2, Vector3 c3) { EX = c1; EY = c2; EZ = c3; } public void SetZero() { EX = Vector3.Zero; EY = Vector3.Zero; EZ = Vector3.Zero; } /// /// Solve A * x = b, where b is a column vector. This is more efficient /// than computing the inverse in one-shot cases. /// /// /// public Vector3 Solve33(Vector3 b) { float det = Vector3.Dot(EX, Vector3.Cross(EY, EZ)); if (det != 0.0f) { det = 1.0f / det; } Vector3 x; x.X = det * Vector3.Dot(b, Vector3.Cross(EY, EZ)); x.Y = det * Vector3.Dot(EX, Vector3.Cross(b, EZ)); x.Z = det * Vector3.Dot(EX, Vector3.Cross(EY, b)); return x; } /// /// Solve A * x = b, where b is a column vector. This is more efficient /// than computing the inverse in one-shot cases. Solve only the upper /// 2-by-2 matrix equation. /// /// /// public Vector2 Solve22(Vector2 b) { float a11 = EX.X, a12 = EY.X, a21 = EX.Y, a22 = EY.Y; float det = a11 * a22 - a12 * a21; if (det != 0.0f) { det = 1.0f / det; } Vector2 x; x.X = det * (a22 * b.X - a12 * b.Y); x.Y = det * (a11 * b.Y - a21 * b.X); return x; } /// /// Get the inverse of this matrix as a 2-by-2. /// Returns the zero matrix if singular. /// /// public void GetInverse22(ref Matrix33 matrix) { float a = EX.X, b = EY.X, c = EX.Y, d = EY.Y; float det = a * d - b * c; if (det != 0.0f) { det = 1.0f / det; } matrix.EX.X = det * d; matrix.EY.X = -det * b; matrix.EX.Z = 0.0f; matrix.EX.Y = -det * c; matrix.EY.Y = det * a; matrix.EY.Z = 0.0f; matrix.EZ.X = 0.0f; matrix.EZ.Y = 0.0f; matrix.EZ.Z = 0.0f; } /// /// Get the symmetric inverse of this matrix as a 3-by-3. /// Returns the zero matrix if singular. /// /// public void GetSymInverse33(ref Matrix33 matrix) { float det = Vector3.Dot(EX, Vector3.Cross(EY, EZ)); if (det != 0.0f) { det = 1.0f / det; } float a11 = EX.X, a12 = EY.X, a13 = EZ.X; float a22 = EY.Y, a23 = EZ.Y; float a33 = EZ.Z; matrix.EX.X = det * (a22 * a33 - a23 * a23); matrix.EX.Y = det * (a13 * a23 - a12 * a33); matrix.EX.Z = det * (a12 * a23 - a13 * a22); matrix.EY.X = matrix.EX.Y; matrix.EY.Y = det * (a11 * a33 - a13 * a13); matrix.EY.Z = det * (a13 * a12 - a11 * a23); matrix.EZ.X = matrix.EX.Z; matrix.EZ.Y = matrix.EY.Z; matrix.EZ.Z = det * (a11 * a22 - a12 * a12); } /// /// Multiply a matrix times a vector. /// public Vector3 Mul(Vector3 v) { return v.X * EX + v.Y * EY + v.Z * EZ; } /// /// Multiply a matrix times a vector. /// public Vector2 Mul22(Vector2 v) { return new Vector2(EX.X * v.X + EY.X * v.Y, EX.Y * v.X + EY.Y * v.Y); } } }