feat: redesign memory system — two-layer architecture with grep-based retrieval
This commit is contained in:
@@ -16,7 +16,7 @@
|
||||
|
||||
⚡️ Delivers core agent functionality in just **~4,000** lines of code — **99% smaller** than Clawdbot's 430k+ lines.
|
||||
|
||||
📏 Real-time line count: **3,578 lines** (run `bash core_agent_lines.sh` to verify anytime)
|
||||
📏 Real-time line count: **3,562 lines** (run `bash core_agent_lines.sh` to verify anytime)
|
||||
|
||||
## 📢 News
|
||||
|
||||
|
||||
@@ -97,8 +97,8 @@ You are nanobot, a helpful AI assistant. You have access to tools that allow you
|
||||
|
||||
## Workspace
|
||||
Your workspace is at: {workspace_path}
|
||||
- Memory files: {workspace_path}/memory/MEMORY.md
|
||||
- Daily notes: {workspace_path}/memory/YYYY-MM-DD.md
|
||||
- Long-term memory: {workspace_path}/memory/MEMORY.md
|
||||
- History log: {workspace_path}/memory/HISTORY.md (grep-searchable)
|
||||
- Custom skills: {workspace_path}/skills/{{skill-name}}/SKILL.md
|
||||
|
||||
IMPORTANT: When responding to direct questions or conversations, reply directly with your text response.
|
||||
@@ -106,7 +106,8 @@ Only use the 'message' tool when you need to send a message to a specific chat c
|
||||
For normal conversation, just respond with text - do not call the message tool.
|
||||
|
||||
Always be helpful, accurate, and concise. When using tools, think step by step: what you know, what you need, and why you chose this tool.
|
||||
When remembering something, write to {workspace_path}/memory/MEMORY.md"""
|
||||
When remembering something important, write to {workspace_path}/memory/MEMORY.md
|
||||
To recall past events, grep {workspace_path}/memory/HISTORY.md"""
|
||||
|
||||
def _load_bootstrap_files(self) -> str:
|
||||
"""Load all bootstrap files from workspace."""
|
||||
|
||||
@@ -18,6 +18,7 @@ from nanobot.agent.tools.web import WebSearchTool, WebFetchTool
|
||||
from nanobot.agent.tools.message import MessageTool
|
||||
from nanobot.agent.tools.spawn import SpawnTool
|
||||
from nanobot.agent.tools.cron import CronTool
|
||||
from nanobot.agent.memory import MemoryStore
|
||||
from nanobot.agent.subagent import SubagentManager
|
||||
from nanobot.session.manager import SessionManager
|
||||
|
||||
@@ -41,6 +42,7 @@ class AgentLoop:
|
||||
workspace: Path,
|
||||
model: str | None = None,
|
||||
max_iterations: int = 20,
|
||||
memory_window: int = 50,
|
||||
brave_api_key: str | None = None,
|
||||
exec_config: "ExecToolConfig | None" = None,
|
||||
cron_service: "CronService | None" = None,
|
||||
@@ -54,6 +56,7 @@ class AgentLoop:
|
||||
self.workspace = workspace
|
||||
self.model = model or provider.get_default_model()
|
||||
self.max_iterations = max_iterations
|
||||
self.memory_window = memory_window
|
||||
self.brave_api_key = brave_api_key
|
||||
self.exec_config = exec_config or ExecToolConfig()
|
||||
self.cron_service = cron_service
|
||||
@@ -141,12 +144,13 @@ class AgentLoop:
|
||||
self._running = False
|
||||
logger.info("Agent loop stopping")
|
||||
|
||||
async def _process_message(self, msg: InboundMessage) -> OutboundMessage | None:
|
||||
async def _process_message(self, msg: InboundMessage, session_key: str | None = None) -> OutboundMessage | None:
|
||||
"""
|
||||
Process a single inbound message.
|
||||
|
||||
Args:
|
||||
msg: The inbound message to process.
|
||||
session_key: Override session key (used by process_direct).
|
||||
|
||||
Returns:
|
||||
The response message, or None if no response needed.
|
||||
@@ -160,7 +164,11 @@ class AgentLoop:
|
||||
logger.info(f"Processing message from {msg.channel}:{msg.sender_id}: {preview}")
|
||||
|
||||
# Get or create session
|
||||
session = self.sessions.get_or_create(msg.session_key)
|
||||
session = self.sessions.get_or_create(session_key or msg.session_key)
|
||||
|
||||
# Consolidate memory before processing if session is too large
|
||||
if len(session.messages) > self.memory_window:
|
||||
await self._consolidate_memory(session)
|
||||
|
||||
# Update tool contexts
|
||||
message_tool = self.tools.get("message")
|
||||
@@ -187,6 +195,7 @@ class AgentLoop:
|
||||
# Agent loop
|
||||
iteration = 0
|
||||
final_content = None
|
||||
tools_used: list[str] = []
|
||||
|
||||
while iteration < self.max_iterations:
|
||||
iteration += 1
|
||||
@@ -219,6 +228,7 @@ class AgentLoop:
|
||||
|
||||
# Execute tools
|
||||
for tool_call in response.tool_calls:
|
||||
tools_used.append(tool_call.name)
|
||||
args_str = json.dumps(tool_call.arguments, ensure_ascii=False)
|
||||
logger.info(f"Tool call: {tool_call.name}({args_str[:200]})")
|
||||
result = await self.tools.execute(tool_call.name, tool_call.arguments)
|
||||
@@ -239,9 +249,10 @@ class AgentLoop:
|
||||
preview = final_content[:120] + "..." if len(final_content) > 120 else final_content
|
||||
logger.info(f"Response to {msg.channel}:{msg.sender_id}: {preview}")
|
||||
|
||||
# Save to session
|
||||
# Save to session (include tool names so consolidation sees what happened)
|
||||
session.add_message("user", msg.content)
|
||||
session.add_message("assistant", final_content)
|
||||
session.add_message("assistant", final_content,
|
||||
tools_used=tools_used if tools_used else None)
|
||||
self.sessions.save(session)
|
||||
|
||||
return OutboundMessage(
|
||||
@@ -352,6 +363,67 @@ class AgentLoop:
|
||||
content=final_content
|
||||
)
|
||||
|
||||
async def _consolidate_memory(self, session) -> None:
|
||||
"""Consolidate old messages into MEMORY.md + HISTORY.md, then trim session."""
|
||||
memory = MemoryStore(self.workspace)
|
||||
keep_count = min(10, max(2, self.memory_window // 2))
|
||||
old_messages = session.messages[:-keep_count] # Everything except recent ones
|
||||
if not old_messages:
|
||||
return
|
||||
logger.info(f"Memory consolidation started: {len(session.messages)} messages, archiving {len(old_messages)}, keeping {keep_count}")
|
||||
|
||||
# Format messages for LLM (include tool names when available)
|
||||
lines = []
|
||||
for m in old_messages:
|
||||
if not m.get("content"):
|
||||
continue
|
||||
tools = f" [tools: {', '.join(m['tools_used'])}]" if m.get("tools_used") else ""
|
||||
lines.append(f"[{m.get('timestamp', '?')[:16]}] {m['role'].upper()}{tools}: {m['content']}")
|
||||
conversation = "\n".join(lines)
|
||||
current_memory = memory.read_long_term()
|
||||
|
||||
prompt = f"""You are a memory consolidation agent. Process this conversation and return a JSON object with exactly two keys:
|
||||
|
||||
1. "history_entry": A paragraph (2-5 sentences) summarizing the key events/decisions/topics. Start with a timestamp like [YYYY-MM-DD HH:MM]. Include enough detail to be useful when found by grep search later.
|
||||
|
||||
2. "memory_update": The updated long-term memory content. Add any new facts: user location, preferences, personal info, habits, project context, technical decisions, tools/services used. If nothing new, return the existing content unchanged.
|
||||
|
||||
## Current Long-term Memory
|
||||
{current_memory or "(empty)"}
|
||||
|
||||
## Conversation to Process
|
||||
{conversation}
|
||||
|
||||
Respond with ONLY valid JSON, no markdown fences."""
|
||||
|
||||
try:
|
||||
response = await self.provider.chat(
|
||||
messages=[
|
||||
{"role": "system", "content": "You are a memory consolidation agent. Respond only with valid JSON."},
|
||||
{"role": "user", "content": prompt},
|
||||
],
|
||||
model=self.model,
|
||||
)
|
||||
import json as _json
|
||||
text = (response.content or "").strip()
|
||||
# Strip markdown fences that LLMs often add despite instructions
|
||||
if text.startswith("```"):
|
||||
text = text.split("\n", 1)[-1].rsplit("```", 1)[0].strip()
|
||||
result = _json.loads(text)
|
||||
|
||||
if entry := result.get("history_entry"):
|
||||
memory.append_history(entry)
|
||||
if update := result.get("memory_update"):
|
||||
if update != current_memory:
|
||||
memory.write_long_term(update)
|
||||
|
||||
# Trim session to recent messages
|
||||
session.messages = session.messages[-keep_count:]
|
||||
self.sessions.save(session)
|
||||
logger.info(f"Memory consolidation done, session trimmed to {len(session.messages)} messages")
|
||||
except Exception as e:
|
||||
logger.error(f"Memory consolidation failed: {e}")
|
||||
|
||||
async def process_direct(
|
||||
self,
|
||||
content: str,
|
||||
@@ -364,9 +436,9 @@ class AgentLoop:
|
||||
|
||||
Args:
|
||||
content: The message content.
|
||||
session_key: Session identifier.
|
||||
channel: Source channel (for context).
|
||||
chat_id: Source chat ID (for context).
|
||||
session_key: Session identifier (overrides channel:chat_id for session lookup).
|
||||
channel: Source channel (for tool context routing).
|
||||
chat_id: Source chat ID (for tool context routing).
|
||||
|
||||
Returns:
|
||||
The agent's response.
|
||||
@@ -378,5 +450,5 @@ class AgentLoop:
|
||||
content=content
|
||||
)
|
||||
|
||||
response = await self._process_message(msg)
|
||||
response = await self._process_message(msg, session_key=session_key)
|
||||
return response.content if response else ""
|
||||
|
||||
@@ -1,109 +1,30 @@
|
||||
"""Memory system for persistent agent memory."""
|
||||
|
||||
from pathlib import Path
|
||||
from datetime import datetime
|
||||
|
||||
from nanobot.utils.helpers import ensure_dir, today_date
|
||||
from nanobot.utils.helpers import ensure_dir
|
||||
|
||||
|
||||
class MemoryStore:
|
||||
"""
|
||||
Memory system for the agent.
|
||||
|
||||
Supports daily notes (memory/YYYY-MM-DD.md) and long-term memory (MEMORY.md).
|
||||
"""
|
||||
|
||||
"""Two-layer memory: MEMORY.md (long-term facts) + HISTORY.md (grep-searchable log)."""
|
||||
|
||||
def __init__(self, workspace: Path):
|
||||
self.workspace = workspace
|
||||
self.memory_dir = ensure_dir(workspace / "memory")
|
||||
self.memory_file = self.memory_dir / "MEMORY.md"
|
||||
|
||||
def get_today_file(self) -> Path:
|
||||
"""Get path to today's memory file."""
|
||||
return self.memory_dir / f"{today_date()}.md"
|
||||
|
||||
def read_today(self) -> str:
|
||||
"""Read today's memory notes."""
|
||||
today_file = self.get_today_file()
|
||||
if today_file.exists():
|
||||
return today_file.read_text(encoding="utf-8")
|
||||
return ""
|
||||
|
||||
def append_today(self, content: str) -> None:
|
||||
"""Append content to today's memory notes."""
|
||||
today_file = self.get_today_file()
|
||||
|
||||
if today_file.exists():
|
||||
existing = today_file.read_text(encoding="utf-8")
|
||||
content = existing + "\n" + content
|
||||
else:
|
||||
# Add header for new day
|
||||
header = f"# {today_date()}\n\n"
|
||||
content = header + content
|
||||
|
||||
today_file.write_text(content, encoding="utf-8")
|
||||
|
||||
self.history_file = self.memory_dir / "HISTORY.md"
|
||||
|
||||
def read_long_term(self) -> str:
|
||||
"""Read long-term memory (MEMORY.md)."""
|
||||
if self.memory_file.exists():
|
||||
return self.memory_file.read_text(encoding="utf-8")
|
||||
return ""
|
||||
|
||||
|
||||
def write_long_term(self, content: str) -> None:
|
||||
"""Write to long-term memory (MEMORY.md)."""
|
||||
self.memory_file.write_text(content, encoding="utf-8")
|
||||
|
||||
def get_recent_memories(self, days: int = 7) -> str:
|
||||
"""
|
||||
Get memories from the last N days.
|
||||
|
||||
Args:
|
||||
days: Number of days to look back.
|
||||
|
||||
Returns:
|
||||
Combined memory content.
|
||||
"""
|
||||
from datetime import timedelta
|
||||
|
||||
memories = []
|
||||
today = datetime.now().date()
|
||||
|
||||
for i in range(days):
|
||||
date = today - timedelta(days=i)
|
||||
date_str = date.strftime("%Y-%m-%d")
|
||||
file_path = self.memory_dir / f"{date_str}.md"
|
||||
|
||||
if file_path.exists():
|
||||
content = file_path.read_text(encoding="utf-8")
|
||||
memories.append(content)
|
||||
|
||||
return "\n\n---\n\n".join(memories)
|
||||
|
||||
def list_memory_files(self) -> list[Path]:
|
||||
"""List all memory files sorted by date (newest first)."""
|
||||
if not self.memory_dir.exists():
|
||||
return []
|
||||
|
||||
files = list(self.memory_dir.glob("????-??-??.md"))
|
||||
return sorted(files, reverse=True)
|
||||
|
||||
|
||||
def append_history(self, entry: str) -> None:
|
||||
with open(self.history_file, "a", encoding="utf-8") as f:
|
||||
f.write(entry.rstrip() + "\n\n")
|
||||
|
||||
def get_memory_context(self) -> str:
|
||||
"""
|
||||
Get memory context for the agent.
|
||||
|
||||
Returns:
|
||||
Formatted memory context including long-term and recent memories.
|
||||
"""
|
||||
parts = []
|
||||
|
||||
# Long-term memory
|
||||
long_term = self.read_long_term()
|
||||
if long_term:
|
||||
parts.append("## Long-term Memory\n" + long_term)
|
||||
|
||||
# Today's notes
|
||||
today = self.read_today()
|
||||
if today:
|
||||
parts.append("## Today's Notes\n" + today)
|
||||
|
||||
return "\n\n".join(parts) if parts else ""
|
||||
return f"## Long-term Memory\n{long_term}" if long_term else ""
|
||||
|
||||
@@ -200,7 +200,7 @@ You are a helpful AI assistant. Be concise, accurate, and friendly.
|
||||
- Always explain what you're doing before taking actions
|
||||
- Ask for clarification when the request is ambiguous
|
||||
- Use tools to help accomplish tasks
|
||||
- Remember important information in your memory files
|
||||
- Remember important information in memory/MEMORY.md; past events are logged in memory/HISTORY.md
|
||||
""",
|
||||
"SOUL.md": """# Soul
|
||||
|
||||
@@ -258,6 +258,11 @@ This file stores important information that should persist across sessions.
|
||||
(Things to remember)
|
||||
""")
|
||||
console.print(" [dim]Created memory/MEMORY.md[/dim]")
|
||||
|
||||
history_file = memory_dir / "HISTORY.md"
|
||||
if not history_file.exists():
|
||||
history_file.write_text("")
|
||||
console.print(" [dim]Created memory/HISTORY.md[/dim]")
|
||||
|
||||
# Create skills directory for custom user skills
|
||||
skills_dir = workspace / "skills"
|
||||
@@ -324,6 +329,7 @@ def gateway(
|
||||
workspace=config.workspace_path,
|
||||
model=config.agents.defaults.model,
|
||||
max_iterations=config.agents.defaults.max_tool_iterations,
|
||||
memory_window=config.agents.defaults.memory_window,
|
||||
brave_api_key=config.tools.web.search.api_key or None,
|
||||
exec_config=config.tools.exec,
|
||||
cron_service=cron,
|
||||
@@ -428,6 +434,9 @@ def agent(
|
||||
bus=bus,
|
||||
provider=provider,
|
||||
workspace=config.workspace_path,
|
||||
model=config.agents.defaults.model,
|
||||
max_iterations=config.agents.defaults.max_tool_iterations,
|
||||
memory_window=config.agents.defaults.memory_window,
|
||||
brave_api_key=config.tools.web.search.api_key or None,
|
||||
exec_config=config.tools.exec,
|
||||
restrict_to_workspace=config.tools.restrict_to_workspace,
|
||||
|
||||
@@ -161,6 +161,7 @@ class AgentDefaults(BaseModel):
|
||||
max_tokens: int = 8192
|
||||
temperature: float = 0.7
|
||||
max_tool_iterations: int = 20
|
||||
memory_window: int = 50
|
||||
|
||||
|
||||
class AgentsConfig(BaseModel):
|
||||
|
||||
31
nanobot/skills/memory/SKILL.md
Normal file
31
nanobot/skills/memory/SKILL.md
Normal file
@@ -0,0 +1,31 @@
|
||||
---
|
||||
name: memory
|
||||
description: Two-layer memory system with grep-based recall.
|
||||
always: true
|
||||
---
|
||||
|
||||
# Memory
|
||||
|
||||
## Structure
|
||||
|
||||
- `memory/MEMORY.md` — Long-term facts (preferences, project context, relationships). Always loaded into your context.
|
||||
- `memory/HISTORY.md` — Append-only event log. NOT loaded into context. Search it with grep.
|
||||
|
||||
## Search Past Events
|
||||
|
||||
```bash
|
||||
grep -i "keyword" memory/HISTORY.md
|
||||
```
|
||||
|
||||
Use the `exec` tool to run grep. Combine patterns: `grep -iE "meeting|deadline" memory/HISTORY.md`
|
||||
|
||||
## When to Update MEMORY.md
|
||||
|
||||
Write important facts immediately using `edit_file` or `write_file`:
|
||||
- User preferences ("I prefer dark mode")
|
||||
- Project context ("The API uses OAuth2")
|
||||
- Relationships ("Alice is the project lead")
|
||||
|
||||
## Auto-consolidation
|
||||
|
||||
Old conversations are automatically summarized and appended to HISTORY.md when the session grows large. Long-term facts are extracted to MEMORY.md. You don't need to manage this.
|
||||
@@ -37,23 +37,12 @@ def get_sessions_path() -> Path:
|
||||
return ensure_dir(get_data_path() / "sessions")
|
||||
|
||||
|
||||
def get_memory_path(workspace: Path | None = None) -> Path:
|
||||
"""Get the memory directory within the workspace."""
|
||||
ws = workspace or get_workspace_path()
|
||||
return ensure_dir(ws / "memory")
|
||||
|
||||
|
||||
def get_skills_path(workspace: Path | None = None) -> Path:
|
||||
"""Get the skills directory within the workspace."""
|
||||
ws = workspace or get_workspace_path()
|
||||
return ensure_dir(ws / "skills")
|
||||
|
||||
|
||||
def today_date() -> str:
|
||||
"""Get today's date in YYYY-MM-DD format."""
|
||||
return datetime.now().strftime("%Y-%m-%d")
|
||||
|
||||
|
||||
def timestamp() -> str:
|
||||
"""Get current timestamp in ISO format."""
|
||||
return datetime.now().isoformat()
|
||||
|
||||
@@ -20,8 +20,8 @@ You have access to:
|
||||
|
||||
## Memory
|
||||
|
||||
- Use `memory/` directory for daily notes
|
||||
- Use `MEMORY.md` for long-term information
|
||||
- `memory/MEMORY.md` — long-term facts (preferences, context, relationships)
|
||||
- `memory/HISTORY.md` — append-only event log, search with grep to recall past events
|
||||
|
||||
## Scheduled Reminders
|
||||
|
||||
|
||||
Reference in New Issue
Block a user