mirror of
https://github.com/space-wizards/RobustToolbox.git
synced 2026-02-15 03:30:53 +01:00
165 lines
5.1 KiB
C#
165 lines
5.1 KiB
C#
/* Original source Farseer Physics Engine:
|
|
* Copyright (c) 2014 Ian Qvist, http://farseerphysics.codeplex.com
|
|
* Microsoft Permissive License (Ms-PL) v1.1
|
|
*/
|
|
|
|
using System;
|
|
using System.Collections.Generic;
|
|
using System.Numerics;
|
|
using Robust.Shared.Maths;
|
|
using Robust.Shared.Utility;
|
|
|
|
namespace Robust.Shared.Physics
|
|
{
|
|
/// <summary>
|
|
/// Takes in a list of vertices and removes any that are redundant (within tolerance).
|
|
/// </summary>
|
|
public interface IVerticesSimplifier
|
|
{
|
|
List<Vector2> Simplify(List<Vector2> vertices, float tolerance);
|
|
}
|
|
|
|
/// <inheritdoc />
|
|
public sealed class CollinearSimplifier : IVerticesSimplifier
|
|
{
|
|
/// <summary>
|
|
/// Removes all collinear points on the polygon.
|
|
/// </summary>
|
|
public List<Vector2> Simplify(List<Vector2> vertices, float tolerance = 0)
|
|
{
|
|
if (vertices.Count <= 3)
|
|
return vertices;
|
|
|
|
var simplified = new List<Vector2>(vertices.Count);
|
|
|
|
for (var i = 0; i < vertices.Count; i++)
|
|
{
|
|
// No wraparound for negative sooooo
|
|
var prev = vertices[i == 0 ? vertices.Count - 1 : i - 1];
|
|
var current = vertices[i];
|
|
var next = vertices[(i + 1) % vertices.Count];
|
|
|
|
// If they collinear, continue
|
|
if (IsCollinear(in prev, in current, in next, tolerance))
|
|
continue;
|
|
|
|
simplified.Add(current);
|
|
}
|
|
|
|
// Farseer didn't seem to handle straight lines and nuked all points
|
|
if (simplified.Count == 0)
|
|
{
|
|
simplified.Add(vertices[0]);
|
|
simplified.Add(vertices[^1]);
|
|
}
|
|
|
|
return simplified;
|
|
}
|
|
|
|
private bool IsCollinear(in Vector2 prev, in Vector2 current, in Vector2 next, float tolerance)
|
|
{
|
|
return FloatInRange(Area(in prev, in current, in next), -tolerance, tolerance);
|
|
}
|
|
|
|
private float Area(in Vector2 a, in Vector2 b, in Vector2 c)
|
|
{
|
|
return a.X * (b.Y - c.Y) + b.X * (c.Y - a.Y) + c.X * (a.Y - b.Y);
|
|
}
|
|
|
|
private bool FloatInRange(float value, float min, float max)
|
|
{
|
|
return (value >= min && value <= max);
|
|
}
|
|
}
|
|
|
|
/// <inheritdoc />
|
|
public sealed class RamerDouglasPeuckerSimplifier : IVerticesSimplifier
|
|
{
|
|
/// <summary>
|
|
/// Ramer-Douglas-Peucker polygon simplification algorithm. This is the general recursive version that does not use the
|
|
/// speed-up technique by using the Melkman convex hull.
|
|
///
|
|
/// If you pass in 0, it will remove all collinear points.
|
|
/// </summary>
|
|
/// <returns>The simplified polygon</returns>
|
|
public List<Vector2> Simplify(List<Vector2> vertices, float distanceTolerance)
|
|
{
|
|
if (vertices.Count <= 3)
|
|
return vertices;
|
|
|
|
Span<bool> usePoint = stackalloc bool[vertices.Count];
|
|
|
|
for (var i = 0; i < vertices.Count; i++)
|
|
usePoint[i] = true;
|
|
|
|
SimplifySection(vertices, 0, vertices.Count - 1, usePoint, distanceTolerance);
|
|
|
|
var simplified = new List<Vector2>(vertices.Count);
|
|
|
|
for (var i = 0; i < vertices.Count; i++)
|
|
{
|
|
if (usePoint[i])
|
|
simplified.Add(vertices[i]);
|
|
}
|
|
|
|
return simplified;
|
|
}
|
|
|
|
private static void SimplifySection(List<Vector2> vertices, int i, int j, Span<bool> usePoint, float distanceTolerance)
|
|
{
|
|
if (i + 1 == j)
|
|
return;
|
|
|
|
var a = vertices[i];
|
|
var b = vertices[j];
|
|
|
|
double maxDistance = -1.0;
|
|
int maxIndex = i;
|
|
for (int k = i + 1; k < j; k++)
|
|
{
|
|
Vector2 point = vertices[k];
|
|
|
|
double distance = DistanceBetweenPointAndLineSegment(in point, in a, in b);
|
|
|
|
if (distance > maxDistance)
|
|
{
|
|
maxDistance = distance;
|
|
maxIndex = k;
|
|
}
|
|
}
|
|
|
|
if (maxDistance <= distanceTolerance)
|
|
{
|
|
for (int k = i + 1; k < j; k++)
|
|
{
|
|
usePoint[k] = false;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
SimplifySection(vertices, i, maxIndex, usePoint, distanceTolerance);
|
|
SimplifySection(vertices, maxIndex, j, usePoint, distanceTolerance);
|
|
}
|
|
}
|
|
|
|
public static float DistanceBetweenPointAndLineSegment(in Vector2 point, in Vector2 start, in Vector2 end)
|
|
{
|
|
if (start == end)
|
|
return (point - start).Length();
|
|
|
|
var v = end - start;
|
|
var w = point - start;
|
|
|
|
var c1 = Vector2.Dot(w, v);
|
|
if (c1 <= 0) return (point - start).Length();
|
|
|
|
var c2 = Vector2.Dot(v, v);
|
|
if (c2 <= c1) return (point - end).Length();
|
|
|
|
var b = c1 / c2;
|
|
var pointOnLine = start + v * b;
|
|
return (point - pointOnLine).Length();
|
|
}
|
|
}
|
|
}
|