Files
RobustToolbox/Robust.Shared/Physics/VerticesSimplifier.cs
2023-07-08 14:08:26 +10:00

165 lines
5.1 KiB
C#

/* Original source Farseer Physics Engine:
* Copyright (c) 2014 Ian Qvist, http://farseerphysics.codeplex.com
* Microsoft Permissive License (Ms-PL) v1.1
*/
using System;
using System.Collections.Generic;
using System.Numerics;
using Robust.Shared.Maths;
using Robust.Shared.Utility;
namespace Robust.Shared.Physics
{
/// <summary>
/// Takes in a list of vertices and removes any that are redundant (within tolerance).
/// </summary>
public interface IVerticesSimplifier
{
List<Vector2> Simplify(List<Vector2> vertices, float tolerance);
}
/// <inheritdoc />
public sealed class CollinearSimplifier : IVerticesSimplifier
{
/// <summary>
/// Removes all collinear points on the polygon.
/// </summary>
public List<Vector2> Simplify(List<Vector2> vertices, float tolerance = 0)
{
if (vertices.Count <= 3)
return vertices;
var simplified = new List<Vector2>(vertices.Count);
for (var i = 0; i < vertices.Count; i++)
{
// No wraparound for negative sooooo
var prev = vertices[i == 0 ? vertices.Count - 1 : i - 1];
var current = vertices[i];
var next = vertices[(i + 1) % vertices.Count];
// If they collinear, continue
if (IsCollinear(in prev, in current, in next, tolerance))
continue;
simplified.Add(current);
}
// Farseer didn't seem to handle straight lines and nuked all points
if (simplified.Count == 0)
{
simplified.Add(vertices[0]);
simplified.Add(vertices[^1]);
}
return simplified;
}
private bool IsCollinear(in Vector2 prev, in Vector2 current, in Vector2 next, float tolerance)
{
return FloatInRange(Area(in prev, in current, in next), -tolerance, tolerance);
}
private float Area(in Vector2 a, in Vector2 b, in Vector2 c)
{
return a.X * (b.Y - c.Y) + b.X * (c.Y - a.Y) + c.X * (a.Y - b.Y);
}
private bool FloatInRange(float value, float min, float max)
{
return (value >= min && value <= max);
}
}
/// <inheritdoc />
public sealed class RamerDouglasPeuckerSimplifier : IVerticesSimplifier
{
/// <summary>
/// Ramer-Douglas-Peucker polygon simplification algorithm. This is the general recursive version that does not use the
/// speed-up technique by using the Melkman convex hull.
///
/// If you pass in 0, it will remove all collinear points.
/// </summary>
/// <returns>The simplified polygon</returns>
public List<Vector2> Simplify(List<Vector2> vertices, float distanceTolerance)
{
if (vertices.Count <= 3)
return vertices;
Span<bool> usePoint = stackalloc bool[vertices.Count];
for (var i = 0; i < vertices.Count; i++)
usePoint[i] = true;
SimplifySection(vertices, 0, vertices.Count - 1, usePoint, distanceTolerance);
var simplified = new List<Vector2>(vertices.Count);
for (var i = 0; i < vertices.Count; i++)
{
if (usePoint[i])
simplified.Add(vertices[i]);
}
return simplified;
}
private static void SimplifySection(List<Vector2> vertices, int i, int j, Span<bool> usePoint, float distanceTolerance)
{
if (i + 1 == j)
return;
var a = vertices[i];
var b = vertices[j];
double maxDistance = -1.0;
int maxIndex = i;
for (int k = i + 1; k < j; k++)
{
Vector2 point = vertices[k];
double distance = DistanceBetweenPointAndLineSegment(in point, in a, in b);
if (distance > maxDistance)
{
maxDistance = distance;
maxIndex = k;
}
}
if (maxDistance <= distanceTolerance)
{
for (int k = i + 1; k < j; k++)
{
usePoint[k] = false;
}
}
else
{
SimplifySection(vertices, i, maxIndex, usePoint, distanceTolerance);
SimplifySection(vertices, maxIndex, j, usePoint, distanceTolerance);
}
}
public static float DistanceBetweenPointAndLineSegment(in Vector2 point, in Vector2 start, in Vector2 end)
{
if (start == end)
return (point - start).Length();
var v = end - start;
var w = point - start;
var c1 = Vector2.Dot(w, v);
if (c1 <= 0) return (point - start).Length();
var c2 = Vector2.Dot(v, v);
if (c2 <= c1) return (point - end).Length();
var b = c1 / c2;
var pointOnLine = start + v * b;
return (point - pointOnLine).Length();
}
}
}