Files
RobustToolbox/Robust.Shared/Physics/Collision/DistanceManager.cs
2023-04-22 16:41:05 +10:00

190 lines
6.6 KiB
C#

/*
* Farseer Physics Engine:
* Copyright (c) 2012 Ian Qvist
*
* Original source Box2D:
* Copyright (c) 2006-2011 Erin Catto http://www.box2d.org
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
using System;
using Robust.Shared.Maths;
namespace Robust.Shared.Physics.Collision;
internal static class DistanceManager
{
private const byte MaxGJKIterations = 20;
public static void ComputeDistance(out DistanceOutput output, out SimplexCache cache, in DistanceInput input)
{
cache = new SimplexCache();
/*
if (Settings.EnableDiagnostics) //FPE: We only gather diagnostics when enabled
++GJKCalls;
*/
// Initialize the simplex.
Simplex simplex = new Simplex();
simplex.ReadCache(ref cache, input.ProxyA, in input.TransformA, input.ProxyB, in input.TransformB);
// These store the vertices of the last simplex so that we
// can check for duplicates and prevent cycling.
Span<int> saveA = stackalloc int[3];
Span<int> saveB = stackalloc int[3];
saveA.Clear();
saveB.Clear();
//float distanceSqr1 = Settings.MaxFloat;
var vSpan = simplex.V.AsSpan;
// Main iteration loop.
int iter = 0;
while (iter < MaxGJKIterations)
{
// Copy simplex so we can identify duplicates.
int saveCount = simplex.Count;
for (var i = 0; i < saveCount; ++i)
{
saveA[i] = vSpan[i].IndexA;
saveB[i] = vSpan[i].IndexB;
}
switch (simplex.Count)
{
case 1:
break;
case 2:
simplex.Solve2();
break;
case 3:
simplex.Solve3();
break;
default:
throw new ArgumentOutOfRangeException();
}
// If we have 3 points, then the origin is in the corresponding triangle.
if (simplex.Count == 3)
{
break;
}
//FPE: This code was not used anyway.
// Compute closest point.
//Vector2 p = simplex.GetClosestPoint();
//float distanceSqr2 = p.LengthSquared();
// Ensure progress
//if (distanceSqr2 >= distanceSqr1)
//{
//break;
//}
//distanceSqr1 = distanceSqr2;
// Get search direction.
Vector2 d = simplex.GetSearchDirection();
// Ensure the search direction is numerically fit.
if (d.LengthSquared < float.Epsilon * float.Epsilon)
{
// The origin is probably contained by a line segment
// or triangle. Thus the shapes are overlapped.
// We can't return zero here even though there may be overlap.
// In case the simplex is a point, segment, or triangle it is difficult
// to determine if the origin is contained in the CSO or very close to it.
break;
}
// Compute a tentative new simplex vertex using support points.
SimplexVertex vertex = vSpan[simplex.Count];
vertex.IndexA = input.ProxyA.GetSupport(Transform.MulT(input.TransformA.Quaternion2D, -d));
vertex.WA = Transform.Mul(input.TransformA, input.ProxyA.Vertices[vertex.IndexA]);
vertex.IndexB = input.ProxyB.GetSupport(Transform.MulT(input.TransformB.Quaternion2D, d));
vertex.WB = Transform.Mul(input.TransformB, input.ProxyB.Vertices[vertex.IndexB]);
vertex.W = vertex.WB - vertex.WA;
vSpan[simplex.Count] = vertex;
// Iteration count is equated to the number of support point calls.
++iter;
/*
if (Settings.EnableDiagnostics) //FPE: We only gather diagnostics when enabled
++GJKIters;
*/
// Check for duplicate support points. This is the main termination criteria.
bool duplicate = false;
for (int i = 0; i < saveCount; ++i)
{
if (vertex.IndexA == saveA[i] && vertex.IndexB == saveB[i])
{
duplicate = true;
break;
}
}
// If we found a duplicate support point we must exit to avoid cycling.
if (duplicate)
{
break;
}
// New vertex is ok and needed.
++simplex.Count;
}
// Prepare output.
simplex.GetWitnessPoints(out output.PointA, out output.PointB);
output.Distance = (output.PointA - output.PointB).Length;
output.Iterations = iter;
// Cache the simplex.
simplex.WriteCache(ref cache);
// Apply radii if requested.
if (input.UseRadii)
{
float rA = input.ProxyA.Radius;
float rB = input.ProxyB.Radius;
if (output.Distance > rA + rB && output.Distance > float.Epsilon)
{
// Shapes are still no overlapped.
// Move the witness points to the outer surface.
output.Distance -= rA + rB;
Vector2 normal = output.PointB - output.PointA;
normal = normal.Normalized;
output.PointA += normal * rA;
output.PointB -= normal * rB;
}
else
{
// Shapes are overlapped when radii are considered.
// Move the witness points to the middle.
Vector2 p = (output.PointA + output.PointB) * 0.5f;
output.PointA = p;
output.PointB = p;
output.Distance = 0.0f;
}
}
}
}