mirror of
https://github.com/space-wizards/RobustToolbox.git
synced 2026-02-14 19:29:36 +01:00
190 lines
6.6 KiB
C#
190 lines
6.6 KiB
C#
/*
|
|
* Farseer Physics Engine:
|
|
* Copyright (c) 2012 Ian Qvist
|
|
*
|
|
* Original source Box2D:
|
|
* Copyright (c) 2006-2011 Erin Catto http://www.box2d.org
|
|
*
|
|
* This software is provided 'as-is', without any express or implied
|
|
* warranty. In no event will the authors be held liable for any damages
|
|
* arising from the use of this software.
|
|
* Permission is granted to anyone to use this software for any purpose,
|
|
* including commercial applications, and to alter it and redistribute it
|
|
* freely, subject to the following restrictions:
|
|
* 1. The origin of this software must not be misrepresented; you must not
|
|
* claim that you wrote the original software. If you use this software
|
|
* in a product, an acknowledgment in the product documentation would be
|
|
* appreciated but is not required.
|
|
* 2. Altered source versions must be plainly marked as such, and must not be
|
|
* misrepresented as being the original software.
|
|
* 3. This notice may not be removed or altered from any source distribution.
|
|
*/
|
|
|
|
using System;
|
|
using Robust.Shared.Maths;
|
|
|
|
namespace Robust.Shared.Physics.Collision;
|
|
|
|
internal static class DistanceManager
|
|
{
|
|
private const byte MaxGJKIterations = 20;
|
|
|
|
public static void ComputeDistance(out DistanceOutput output, out SimplexCache cache, in DistanceInput input)
|
|
{
|
|
cache = new SimplexCache();
|
|
|
|
/*
|
|
if (Settings.EnableDiagnostics) //FPE: We only gather diagnostics when enabled
|
|
++GJKCalls;
|
|
*/
|
|
|
|
// Initialize the simplex.
|
|
Simplex simplex = new Simplex();
|
|
simplex.ReadCache(ref cache, input.ProxyA, in input.TransformA, input.ProxyB, in input.TransformB);
|
|
|
|
// These store the vertices of the last simplex so that we
|
|
// can check for duplicates and prevent cycling.
|
|
Span<int> saveA = stackalloc int[3];
|
|
Span<int> saveB = stackalloc int[3];
|
|
saveA.Clear();
|
|
saveB.Clear();
|
|
|
|
//float distanceSqr1 = Settings.MaxFloat;
|
|
|
|
var vSpan = simplex.V.AsSpan;
|
|
|
|
// Main iteration loop.
|
|
int iter = 0;
|
|
while (iter < MaxGJKIterations)
|
|
{
|
|
// Copy simplex so we can identify duplicates.
|
|
int saveCount = simplex.Count;
|
|
for (var i = 0; i < saveCount; ++i)
|
|
{
|
|
saveA[i] = vSpan[i].IndexA;
|
|
saveB[i] = vSpan[i].IndexB;
|
|
}
|
|
|
|
switch (simplex.Count)
|
|
{
|
|
case 1:
|
|
break;
|
|
case 2:
|
|
simplex.Solve2();
|
|
break;
|
|
case 3:
|
|
simplex.Solve3();
|
|
break;
|
|
default:
|
|
throw new ArgumentOutOfRangeException();
|
|
}
|
|
|
|
// If we have 3 points, then the origin is in the corresponding triangle.
|
|
if (simplex.Count == 3)
|
|
{
|
|
break;
|
|
}
|
|
|
|
//FPE: This code was not used anyway.
|
|
// Compute closest point.
|
|
//Vector2 p = simplex.GetClosestPoint();
|
|
//float distanceSqr2 = p.LengthSquared();
|
|
|
|
// Ensure progress
|
|
//if (distanceSqr2 >= distanceSqr1)
|
|
//{
|
|
//break;
|
|
//}
|
|
//distanceSqr1 = distanceSqr2;
|
|
|
|
// Get search direction.
|
|
Vector2 d = simplex.GetSearchDirection();
|
|
|
|
// Ensure the search direction is numerically fit.
|
|
if (d.LengthSquared < float.Epsilon * float.Epsilon)
|
|
{
|
|
// The origin is probably contained by a line segment
|
|
// or triangle. Thus the shapes are overlapped.
|
|
|
|
// We can't return zero here even though there may be overlap.
|
|
// In case the simplex is a point, segment, or triangle it is difficult
|
|
// to determine if the origin is contained in the CSO or very close to it.
|
|
break;
|
|
}
|
|
|
|
// Compute a tentative new simplex vertex using support points.
|
|
SimplexVertex vertex = vSpan[simplex.Count];
|
|
vertex.IndexA = input.ProxyA.GetSupport(Transform.MulT(input.TransformA.Quaternion2D, -d));
|
|
vertex.WA = Transform.Mul(input.TransformA, input.ProxyA.Vertices[vertex.IndexA]);
|
|
|
|
vertex.IndexB = input.ProxyB.GetSupport(Transform.MulT(input.TransformB.Quaternion2D, d));
|
|
vertex.WB = Transform.Mul(input.TransformB, input.ProxyB.Vertices[vertex.IndexB]);
|
|
vertex.W = vertex.WB - vertex.WA;
|
|
vSpan[simplex.Count] = vertex;
|
|
|
|
// Iteration count is equated to the number of support point calls.
|
|
++iter;
|
|
|
|
/*
|
|
if (Settings.EnableDiagnostics) //FPE: We only gather diagnostics when enabled
|
|
++GJKIters;
|
|
*/
|
|
|
|
// Check for duplicate support points. This is the main termination criteria.
|
|
bool duplicate = false;
|
|
for (int i = 0; i < saveCount; ++i)
|
|
{
|
|
if (vertex.IndexA == saveA[i] && vertex.IndexB == saveB[i])
|
|
{
|
|
duplicate = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If we found a duplicate support point we must exit to avoid cycling.
|
|
if (duplicate)
|
|
{
|
|
break;
|
|
}
|
|
|
|
// New vertex is ok and needed.
|
|
++simplex.Count;
|
|
}
|
|
|
|
// Prepare output.
|
|
simplex.GetWitnessPoints(out output.PointA, out output.PointB);
|
|
output.Distance = (output.PointA - output.PointB).Length;
|
|
output.Iterations = iter;
|
|
|
|
// Cache the simplex.
|
|
simplex.WriteCache(ref cache);
|
|
|
|
// Apply radii if requested.
|
|
if (input.UseRadii)
|
|
{
|
|
float rA = input.ProxyA.Radius;
|
|
float rB = input.ProxyB.Radius;
|
|
|
|
if (output.Distance > rA + rB && output.Distance > float.Epsilon)
|
|
{
|
|
// Shapes are still no overlapped.
|
|
// Move the witness points to the outer surface.
|
|
output.Distance -= rA + rB;
|
|
Vector2 normal = output.PointB - output.PointA;
|
|
normal = normal.Normalized;
|
|
output.PointA += normal * rA;
|
|
output.PointB -= normal * rB;
|
|
}
|
|
else
|
|
{
|
|
// Shapes are overlapped when radii are considered.
|
|
// Move the witness points to the middle.
|
|
Vector2 p = (output.PointA + output.PointB) * 0.5f;
|
|
output.PointA = p;
|
|
output.PointB = p;
|
|
output.Distance = 0.0f;
|
|
}
|
|
}
|
|
}
|
|
}
|