Files
RobustToolbox/Robust.Shared/Physics/Systems/SharedPhysicsSystem.Solver.cs
2023-12-05 00:30:02 +11:00

911 lines
36 KiB
C#

/*
* Farseer Physics Engine:
* Copyright (c) 2012 Ian Qvist
*
* Original source Box2D:
* Copyright (c) 2006-2011 Erin Catto http://www.box2d.org
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
using System;
using System.Numerics;
using System.Threading;
using System.Threading.Tasks;
using Robust.Shared.Maths;
using Robust.Shared.Physics.Collision;
using Robust.Shared.Physics.Components;
using Robust.Shared.Physics.Dynamics;
using Robust.Shared.Physics.Dynamics.Contacts;
using Robust.Shared.Utility;
namespace Robust.Shared.Physics.Systems;
public abstract partial class SharedPhysicsSystem
{
private void ResetSolver(
in SolverData data,
in IslandData island,
ContactVelocityConstraint[] velocityConstraints,
ContactPositionConstraint[] positionConstraints)
{
var contactCount = island.Contacts.Count;
// Build constraints
// For now these are going to be bare but will change
for (var i = 0; i < contactCount; i++)
{
var contact = island.Contacts[i];
Fixture fixtureA = contact.FixtureA!;
Fixture fixtureB = contact.FixtureB!;
var shapeA = fixtureA.Shape;
var shapeB = fixtureB.Shape;
float radiusA = shapeA.Radius;
float radiusB = shapeB.Radius;
var bodyA = contact.BodyA!;
var bodyB = contact.BodyB!;
var manifold = contact.Manifold;
int pointCount = manifold.PointCount;
DebugTools.Assert(pointCount > 0);
ref var velocityConstraint = ref velocityConstraints[i];
velocityConstraint.Friction = contact.Friction;
velocityConstraint.Restitution = contact.Restitution;
velocityConstraint.TangentSpeed = contact.TangentSpeed;
velocityConstraint.IndexA = bodyA.IslandIndex[island.Index];
velocityConstraint.IndexB = bodyB.IslandIndex[island.Index];
Array.Resize(ref velocityConstraint.Points, 2);
// Don't need to reset point data as it all gets set below.
var (invMassA, invMassB) = GetInvMass(bodyA, bodyB);
(velocityConstraint.InvMassA, velocityConstraint.InvMassB) = (invMassA, invMassB);
velocityConstraint.InvIA = bodyA.InvI;
velocityConstraint.InvIB = bodyB.InvI;
velocityConstraint.ContactIndex = i;
velocityConstraint.PointCount = pointCount;
velocityConstraint.K = System.Numerics.Vector4.Zero;
velocityConstraint.NormalMass = System.Numerics.Vector4.Zero;
ref var positionConstraint = ref positionConstraints[i];
positionConstraint.IndexA = bodyA.IslandIndex[island.Index];
positionConstraint.IndexB = bodyB.IslandIndex[island.Index];
(positionConstraint.InvMassA, positionConstraint.InvMassB) = (invMassA, invMassB);
positionConstraint.LocalCenterA = bodyA.LocalCenter;
positionConstraint.LocalCenterB = bodyB.LocalCenter;
Array.Resize(ref positionConstraint.LocalPoints, 2);
positionConstraint.InvIA = bodyA.InvI;
positionConstraint.InvIB = bodyB.InvI;
positionConstraint.LocalNormal = manifold.LocalNormal;
positionConstraint.LocalPoint = manifold.LocalPoint;
positionConstraint.PointCount = pointCount;
positionConstraint.RadiusA = radiusA;
positionConstraint.RadiusB = radiusB;
positionConstraint.Type = manifold.Type;
for (var j = 0; j < pointCount; ++j)
{
var contactPoint = manifold.Points[j];
ref var constraintPoint = ref velocityConstraint.Points[j];
if (_warmStarting)
{
constraintPoint.NormalImpulse = data.DtRatio * contactPoint.NormalImpulse;
constraintPoint.TangentImpulse = data.DtRatio * contactPoint.TangentImpulse;
}
else
{
constraintPoint.NormalImpulse = 0.0f;
constraintPoint.TangentImpulse = 0.0f;
}
constraintPoint.RelativeVelocityA = Vector2.Zero;
constraintPoint.RelativeVelocityB = Vector2.Zero;
constraintPoint.NormalMass = 0.0f;
constraintPoint.TangentMass = 0.0f;
constraintPoint.VelocityBias = 0.0f;
positionConstraint.LocalPoints[j] = contactPoint.LocalPoint;
}
}
}
private (float, float) GetInvMass(PhysicsComponent bodyA, PhysicsComponent bodyB)
{
// God this is shitcodey but uhhhh we need to snowflake KinematicController for nice collisions.
// TODO: Might need more finagling with the kinematic bodytype
switch (bodyA.BodyType)
{
case BodyType.Kinematic:
case BodyType.Static:
return (bodyA.InvMass, bodyB.InvMass);
case BodyType.KinematicController:
switch (bodyB.BodyType)
{
case BodyType.Kinematic:
case BodyType.Static:
return (bodyA.InvMass, bodyB.InvMass);
case BodyType.Dynamic:
return (bodyA.InvMass, 0f);
case BodyType.KinematicController:
return (0f, 0f);
default:
throw new ArgumentOutOfRangeException();
}
case BodyType.Dynamic:
switch (bodyB.BodyType)
{
case BodyType.Kinematic:
case BodyType.Static:
case BodyType.Dynamic:
return (bodyA.InvMass, bodyB.InvMass);
case BodyType.KinematicController:
return (0f, bodyB.InvMass);
default:
throw new ArgumentOutOfRangeException();
}
default:
throw new ArgumentOutOfRangeException();
}
}
private void InitializeVelocityConstraints(
in SolverData data,
in IslandData island,
ContactVelocityConstraint[] velocityConstraints,
ContactPositionConstraint[] positionConstraints,
Vector2[] positions,
float[] angles,
Vector2[] linearVelocities,
float[] angularVelocities)
{
Span<Vector2> points = stackalloc Vector2[2];
var contactCount = island.Contacts.Count;
var contacts = island.Contacts;
var offset = island.Offset;
for (var i = 0; i < contactCount; ++i)
{
ref var velocityConstraint = ref velocityConstraints[i];
var positionConstraint = positionConstraints[i];
var radiusA = positionConstraint.RadiusA;
var radiusB = positionConstraint.RadiusB;
var manifold = contacts[velocityConstraint.ContactIndex].Manifold;
var indexA = velocityConstraint.IndexA;
var indexB = velocityConstraint.IndexB;
var invMassA = velocityConstraint.InvMassA;
var invMassB = velocityConstraint.InvMassB;
var invIA = velocityConstraint.InvIA;
var invIB = velocityConstraint.InvIB;
var localCenterA = positionConstraint.LocalCenterA;
var localCenterB = positionConstraint.LocalCenterB;
var centerA = positions[indexA];
var angleA = angles[indexA];
var linVelocityA = linearVelocities[offset + indexA];
var angVelocityA = angularVelocities[offset + indexA];
var centerB = positions[indexB];
var angleB = angles[indexB];
var linVelocityB = linearVelocities[offset + indexB];
var angVelocityB = angularVelocities[offset + indexB];
DebugTools.Assert(manifold.PointCount > 0);
var xfA = new Transform(angleA);
var xfB = new Transform(angleB);
xfA.Position = centerA - Physics.Transform.Mul(xfA.Quaternion2D, localCenterA);
xfB.Position = centerB - Physics.Transform.Mul(xfB.Quaternion2D, localCenterB);
InitializeManifold(ref manifold, xfA, xfB, radiusA, radiusB, out var normal, points);
velocityConstraint.Normal = normal;
int pointCount = velocityConstraint.PointCount;
for (int j = 0; j < pointCount; ++j)
{
ref var vcp = ref velocityConstraint.Points[j];
vcp.RelativeVelocityA = points[j] - centerA;
vcp.RelativeVelocityB = points[j] - centerB;
float rnA = Vector2Helpers.Cross(vcp.RelativeVelocityA, velocityConstraint.Normal);
float rnB = Vector2Helpers.Cross(vcp.RelativeVelocityB, velocityConstraint.Normal);
float kNormal = invMassA + invMassB + invIA * rnA * rnA + invIB * rnB * rnB;
vcp.NormalMass = kNormal > 0.0f ? 1.0f / kNormal : 0.0f;
Vector2 tangent = Vector2Helpers.Cross(velocityConstraint.Normal, 1.0f);
float rtA = Vector2Helpers.Cross(vcp.RelativeVelocityA, tangent);
float rtB = Vector2Helpers.Cross(vcp.RelativeVelocityB, tangent);
float kTangent = invMassA + invMassB + invIA * rtA * rtA + invIB * rtB * rtB;
vcp.TangentMass = kTangent > 0.0f ? 1.0f / kTangent : 0.0f;
// Setup a velocity bias for restitution.
vcp.VelocityBias = 0.0f;
float vRel = Vector2.Dot(velocityConstraint.Normal, linVelocityB + Vector2Helpers.Cross(angVelocityB, vcp.RelativeVelocityB) - linVelocityA - Vector2Helpers.Cross(angVelocityA, vcp.RelativeVelocityA));
if (vRel < -data.VelocityThreshold)
{
vcp.VelocityBias = -velocityConstraint.Restitution * vRel;
}
}
// If we have two points, then prepare the block solver.
if (velocityConstraint.PointCount == 2)
{
var vcp1 = velocityConstraint.Points[0];
var vcp2 = velocityConstraint.Points[1];
var rn1A = Vector2Helpers.Cross(vcp1.RelativeVelocityA, velocityConstraint.Normal);
var rn1B = Vector2Helpers.Cross(vcp1.RelativeVelocityB, velocityConstraint.Normal);
var rn2A = Vector2Helpers.Cross(vcp2.RelativeVelocityA, velocityConstraint.Normal);
var rn2B = Vector2Helpers.Cross(vcp2.RelativeVelocityB, velocityConstraint.Normal);
var k11 = invMassA + invMassB + invIA * rn1A * rn1A + invIB * rn1B * rn1B;
var k22 = invMassA + invMassB + invIA * rn2A * rn2A + invIB * rn2B * rn2B;
var k12 = invMassA + invMassB + invIA * rn1A * rn2A + invIB * rn1B * rn2B;
// Ensure a reasonable condition number.
const float k_maxConditionNumber = 1000.0f;
if (k11 * k11 < k_maxConditionNumber * (k11 * k22 - k12 * k12))
{
// K is safe to invert.
velocityConstraint.K = new System.Numerics.Vector4(k11, k12, k12, k22);
velocityConstraint.NormalMass = Vector4Helpers.Inverse(velocityConstraint.K);
}
else
{
// The constraints are redundant, just use one.
// TODO_ERIN use deepest?
velocityConstraint.PointCount = 1;
}
}
}
}
private void WarmStart(
in SolverData data,
in IslandData island,
ContactVelocityConstraint[] velocityConstraints,
Vector2[] linearVelocities,
float[] angularVelocities)
{
var offset = island.Offset;
for (var i = 0; i < island.Contacts.Count; ++i)
{
var velocityConstraint = velocityConstraints[i];
var indexA = velocityConstraint.IndexA;
var indexB = velocityConstraint.IndexB;
var invMassA = velocityConstraint.InvMassA;
var invIA = velocityConstraint.InvIA;
var invMassB = velocityConstraint.InvMassB;
var invIB = velocityConstraint.InvIB;
var pointCount = velocityConstraint.PointCount;
ref var linVelocityA = ref linearVelocities[offset + indexA];
ref var angVelocityA = ref angularVelocities[offset + indexA];
ref var linVelocityB = ref linearVelocities[offset + indexB];
ref var angVelocityB = ref angularVelocities[offset + indexB];
var normal = velocityConstraint.Normal;
var tangent = Vector2Helpers.Cross(normal, 1.0f);
for (var j = 0; j < pointCount; ++j)
{
var constraintPoint = velocityConstraint.Points[j];
var P = normal * constraintPoint.NormalImpulse + tangent * constraintPoint.TangentImpulse;
angVelocityA -= invIA * Vector2Helpers.Cross(constraintPoint.RelativeVelocityA, P);
linVelocityA -= P * invMassA;
angVelocityB += invIB * Vector2Helpers.Cross(constraintPoint.RelativeVelocityB, P);
linVelocityB += P * invMassB;
}
}
}
private void SolveVelocityConstraints(IslandData island,
ParallelOptions? options,
ContactVelocityConstraint[] velocityConstraints,
Vector2[] linearVelocities,
float[] angularVelocities)
{
var contactCount = island.Contacts.Count;
if (options != null && contactCount > VelocityConstraintsPerThread * 2)
{
var batches = (int) Math.Ceiling((float) contactCount / VelocityConstraintsPerThread);
Parallel.For(0, batches, options, i =>
{
var start = i * VelocityConstraintsPerThread;
var end = Math.Min(start + VelocityConstraintsPerThread, contactCount);
SolveVelocityConstraints(island, start, end, velocityConstraints, linearVelocities, angularVelocities);
});
}
else
{
SolveVelocityConstraints(island, 0, contactCount, velocityConstraints, linearVelocities, angularVelocities);
}
}
private void SolveVelocityConstraints(
IslandData island,
int start,
int end,
ContactVelocityConstraint[] velocityConstraints,
Vector2[] linearVelocities,
float[] angularVelocities)
{
var offset = island.Offset;
// Here be dragons
for (var i = start; i < end; ++i)
{
ref var velocityConstraint = ref velocityConstraints[i];
var indexA = velocityConstraint.IndexA;
var indexB = velocityConstraint.IndexB;
var mA = velocityConstraint.InvMassA;
var iA = velocityConstraint.InvIA;
var mB = velocityConstraint.InvMassB;
var iB = velocityConstraint.InvIB;
var pointCount = velocityConstraint.PointCount;
ref var vA = ref linearVelocities[offset + indexA];
ref var wA = ref angularVelocities[offset + indexA];
ref var vB = ref linearVelocities[offset + indexB];
ref var wB = ref angularVelocities[offset + indexB];
var normal = velocityConstraint.Normal;
var tangent = Vector2Helpers.Cross(normal, 1.0f);
var friction = velocityConstraint.Friction;
DebugTools.Assert(pointCount is 1 or 2);
// Solve tangent constraints first because non-penetration is more important
// than friction.
for (var j = 0; j < pointCount; ++j)
{
ref var velConstraintPoint = ref velocityConstraint.Points[j];
// Relative velocity at contact
var dv = vB + Vector2Helpers.Cross(wB, velConstraintPoint.RelativeVelocityB) - vA - Vector2Helpers.Cross(wA, velConstraintPoint.RelativeVelocityA);
// Compute tangent force
float vt = Vector2.Dot(dv, tangent) - velocityConstraint.TangentSpeed;
float lambda = velConstraintPoint.TangentMass * (-vt);
// b2Clamp the accumulated force
var maxFriction = friction * velConstraintPoint.NormalImpulse;
var newImpulse = Math.Clamp(velConstraintPoint.TangentImpulse + lambda, -maxFriction, maxFriction);
lambda = newImpulse - velConstraintPoint.TangentImpulse;
velConstraintPoint.TangentImpulse = newImpulse;
// Apply contact impulse
Vector2 P = tangent * lambda;
vA -= P * mA;
wA -= iA * Vector2Helpers.Cross(velConstraintPoint.RelativeVelocityA, P);
vB += P * mB;
wB += iB * Vector2Helpers.Cross(velConstraintPoint.RelativeVelocityB, P);
}
// Solve normal constraints
if (velocityConstraint.PointCount == 1)
{
ref var vcp = ref velocityConstraint.Points[0];
// Relative velocity at contact
Vector2 dv = vB + Vector2Helpers.Cross(wB, vcp.RelativeVelocityB) - vA - Vector2Helpers.Cross(wA, vcp.RelativeVelocityA);
// Compute normal impulse
float vn = Vector2.Dot(dv, normal);
float lambda = -vcp.NormalMass * (vn - vcp.VelocityBias);
// b2Clamp the accumulated impulse
float newImpulse = Math.Max(vcp.NormalImpulse + lambda, 0.0f);
lambda = newImpulse - vcp.NormalImpulse;
vcp.NormalImpulse = newImpulse;
// Apply contact impulse
Vector2 P = normal * lambda;
vA -= P * mA;
wA -= iA * Vector2Helpers.Cross(vcp.RelativeVelocityA, P);
vB += P * mB;
wB += iB * Vector2Helpers.Cross(vcp.RelativeVelocityB, P);
}
else
{
// Block solver developed in collaboration with Dirk Gregorius (back in 01/07 on Box2D_Lite).
// Build the mini LCP for this contact patch
//
// vn = A * x + b, vn >= 0, , vn >= 0, x >= 0 and vn_i * x_i = 0 with i = 1..2
//
// A = J * W * JT and J = ( -n, -r1 x n, n, r2 x n )
// b = vn0 - velocityBias
//
// The system is solved using the "Total enumeration method" (s. Murty). The complementary constraint vn_i * x_i
// implies that we must have in any solution either vn_i = 0 or x_i = 0. So for the 2D contact problem the cases
// vn1 = 0 and vn2 = 0, x1 = 0 and x2 = 0, x1 = 0 and vn2 = 0, x2 = 0 and vn1 = 0 need to be tested. The first valid
// solution that satisfies the problem is chosen.
//
// In order to account of the accumulated impulse 'a' (because of the iterative nature of the solver which only requires
// that the accumulated impulse is clamped and not the incremental impulse) we change the impulse variable (x_i).
//
// Substitute:
//
// x = a + d
//
// a := old total impulse
// x := new total impulse
// d := incremental impulse
//
// For the current iteration we extend the formula for the incremental impulse
// to compute the new total impulse:
//
// vn = A * d + b
// = A * (x - a) + b
// = A * x + b - A * a
// = A * x + b'
// b' = b - A * a;
ref var cp1 = ref velocityConstraint.Points[0];
ref var cp2 = ref velocityConstraint.Points[1];
Vector2 a = new Vector2(cp1.NormalImpulse, cp2.NormalImpulse);
DebugTools.Assert(a.X >= 0.0f && a.Y >= 0.0f);
// Relative velocity at contact
Vector2 dv1 = vB + Vector2Helpers.Cross(wB, cp1.RelativeVelocityB) - vA - Vector2Helpers.Cross(wA, cp1.RelativeVelocityA);
Vector2 dv2 = vB + Vector2Helpers.Cross(wB, cp2.RelativeVelocityB) - vA - Vector2Helpers.Cross(wA, cp2.RelativeVelocityA);
// Compute normal velocity
float vn1 = Vector2.Dot(dv1, normal);
float vn2 = Vector2.Dot(dv2, normal);
Vector2 b = new Vector2
{
X = vn1 - cp1.VelocityBias,
Y = vn2 - cp2.VelocityBias
};
// Compute b'
b -= Physics.Transform.Mul(velocityConstraint.K, a);
//const float k_errorTol = 1e-3f;
//B2_NOT_USED(k_errorTol);
for (; ; )
{
//
// Case 1: vn = 0
//
// 0 = A * x + b'
//
// Solve for x:
//
// x = - inv(A) * b'
//
Vector2 x = -Physics.Transform.Mul(velocityConstraint.NormalMass, b);
if (x.X >= 0.0f && x.Y >= 0.0f)
{
// Get the incremental impulse
Vector2 d = x - a;
// Apply incremental impulse
Vector2 P1 = normal * d.X;
Vector2 P2 = normal * d.Y;
vA -= (P1 + P2) * mA;
wA -= iA * (Vector2Helpers.Cross(cp1.RelativeVelocityA, P1) + Vector2Helpers.Cross(cp2.RelativeVelocityA, P2));
vB += (P1 + P2) * mB;
wB += iB * (Vector2Helpers.Cross(cp1.RelativeVelocityB, P1) + Vector2Helpers.Cross(cp2.RelativeVelocityB, P2));
// Accumulate
cp1.NormalImpulse = x.X;
cp2.NormalImpulse = x.Y;
break;
}
//
// Case 2: vn1 = 0 and x2 = 0
//
// 0 = a11 * x1 + a12 * 0 + b1'
// vn2 = a21 * x1 + a22 * 0 + b2'
//
x.X = -cp1.NormalMass * b.X;
x.Y = 0.0f;
vn1 = 0.0f;
vn2 = velocityConstraint.K.Y * x.X + b.Y;
if (x.X >= 0.0f && vn2 >= 0.0f)
{
// Get the incremental impulse
Vector2 d = x - a;
// Apply incremental impulse
Vector2 P1 = normal * d.X;
Vector2 P2 = normal * d.Y;
vA -= (P1 + P2) * mA;
wA -= iA * (Vector2Helpers.Cross(cp1.RelativeVelocityA, P1) + Vector2Helpers.Cross(cp2.RelativeVelocityA, P2));
vB += (P1 + P2) * mB;
wB += iB * (Vector2Helpers.Cross(cp1.RelativeVelocityB, P1) + Vector2Helpers.Cross(cp2.RelativeVelocityB, P2));
// Accumulate
cp1.NormalImpulse = x.X;
cp2.NormalImpulse = x.Y;
break;
}
//
// Case 3: vn2 = 0 and x1 = 0
//
// vn1 = a11 * 0 + a12 * x2 + b1'
// 0 = a21 * 0 + a22 * x2 + b2'
//
x.X = 0.0f;
x.Y = -cp2.NormalMass * b.Y;
vn1 = velocityConstraint.K.Z * x.Y + b.X;
vn2 = 0.0f;
if (x.Y >= 0.0f && vn1 >= 0.0f)
{
// Resubstitute for the incremental impulse
Vector2 d = x - a;
// Apply incremental impulse
Vector2 P1 = normal * d.X;
Vector2 P2 = normal * d.Y;
vA -= (P1 + P2) * mA;
wA -= iA * (Vector2Helpers.Cross(cp1.RelativeVelocityA, P1) + Vector2Helpers.Cross(cp2.RelativeVelocityA, P2));
vB += (P1 + P2) * mB;
wB += iB * (Vector2Helpers.Cross(cp1.RelativeVelocityB, P1) + Vector2Helpers.Cross(cp2.RelativeVelocityB, P2));
// Accumulate
cp1.NormalImpulse = x.X;
cp2.NormalImpulse = x.Y;
break;
}
//
// Case 4: x1 = 0 and x2 = 0
//
// vn1 = b1
// vn2 = b2;
x.X = 0.0f;
x.Y = 0.0f;
vn1 = b.X;
vn2 = b.Y;
if (vn1 >= 0.0f && vn2 >= 0.0f)
{
// Resubstitute for the incremental impulse
Vector2 d = x - a;
// Apply incremental impulse
Vector2 P1 = normal * d.X;
Vector2 P2 = normal * d.Y;
vA -= (P1 + P2) * mA;
wA -= iA * (Vector2Helpers.Cross(cp1.RelativeVelocityA, P1) + Vector2Helpers.Cross(cp2.RelativeVelocityA, P2));
vB += (P1 + P2) * mB;
wB += iB * (Vector2Helpers.Cross(cp1.RelativeVelocityB, P1) + Vector2Helpers.Cross(cp2.RelativeVelocityB, P2));
// Accumulate
cp1.NormalImpulse = x.X;
cp2.NormalImpulse = x.Y;
break;
}
// No solution, give up. This is hit sometimes, but it doesn't seem to matter.
break;
}
}
}
}
private void StoreImpulses(in IslandData island, ContactVelocityConstraint[] velocityConstraints)
{
for (var i = 0; i < island.Contacts.Count; ++i)
{
ContactVelocityConstraint velocityConstraint = velocityConstraints[i];
ref var manifold = ref island.Contacts[velocityConstraint.ContactIndex].Manifold;
for (var j = 0; j < velocityConstraint.PointCount; ++j)
{
ref var point = ref manifold.Points[j];
point.NormalImpulse = velocityConstraint.Points[j].NormalImpulse;
point.TangentImpulse = velocityConstraint.Points[j].TangentImpulse;
}
}
}
private bool SolvePositionConstraints(
SolverData data,
in IslandData island,
ParallelOptions? options,
ContactPositionConstraint[] positionConstraints,
Vector2[] positions,
float[] angles)
{
var contactCount = island.Contacts.Count;
// Parallel
if (options != null && contactCount > PositionConstraintsPerThread * 2)
{
var unsolved = 0;
var batches = (int) Math.Ceiling((float) contactCount / PositionConstraintsPerThread);
Parallel.For(0, batches, options, i =>
{
var start = i * PositionConstraintsPerThread;
var end = Math.Min(start + PositionConstraintsPerThread, contactCount);
if (!SolvePositionConstraints(data, start, end, positionConstraints, positions, angles))
Interlocked.Increment(ref unsolved);
});
return unsolved == 0;
}
// No parallel
return SolvePositionConstraints(data, 0, contactCount, positionConstraints, positions, angles);
}
/// <summary>
/// Tries to solve positions for all contacts specified.
/// </summary>
/// <returns>true if all positions solved</returns>
private bool SolvePositionConstraints(
SolverData data,
int start,
int end,
ContactPositionConstraint[] positionConstraints,
Vector2[] positions,
float[] angles)
{
float minSeparation = 0.0f;
for (int i = start; i < end; ++i)
{
var pc = positionConstraints[i];
int indexA = pc.IndexA;
int indexB = pc.IndexB;
Vector2 localCenterA = pc.LocalCenterA;
float mA = pc.InvMassA;
float iA = pc.InvIA;
Vector2 localCenterB = pc.LocalCenterB;
float mB = pc.InvMassB;
float iB = pc.InvIB;
int pointCount = pc.PointCount;
ref var centerA = ref positions[indexA];
ref var angleA = ref angles[indexA];
ref var centerB = ref positions[indexB];
ref var angleB = ref angles[indexB];
// Solve normal constraints
for (int j = 0; j < pointCount; ++j)
{
Transform xfA = new Transform(angleA);
Transform xfB = new Transform(angleB);
xfA.Position = centerA - Physics.Transform.Mul(xfA.Quaternion2D, localCenterA);
xfB.Position = centerB - Physics.Transform.Mul(xfB.Quaternion2D, localCenterB);
Vector2 normal;
Vector2 point;
float separation;
PositionSolverManifoldInitialize(pc, j, xfA, xfB, out normal, out point, out separation);
Vector2 rA = point - centerA;
Vector2 rB = point - centerB;
// Track max constraint error.
minSeparation = Math.Min(minSeparation, separation);
// Prevent large corrections and allow slop.
float C = Math.Clamp(data.Baumgarte * (separation + PhysicsConstants.LinearSlop), -_maxLinearCorrection, 0.0f);
// Compute the effective mass.
float rnA = Vector2Helpers.Cross(rA, normal);
float rnB = Vector2Helpers.Cross(rB, normal);
float K = mA + mB + iA * rnA * rnA + iB * rnB * rnB;
// Compute normal impulse
float impulse = K > 0.0f ? -C / K : 0.0f;
Vector2 P = normal * impulse;
centerA -= P * mA;
angleA -= iA * Vector2Helpers.Cross(rA, P);
centerB += P * mB;
angleB += iB * Vector2Helpers.Cross(rB, P);
}
}
// We can't expect minSpeparation >= -b2_linearSlop because we don't
// push the separation above -b2_linearSlop.
return minSeparation >= -3.0f * PhysicsConstants.LinearSlop;
}
/// <summary>
/// Evaluate the manifold with supplied transforms. This assumes
/// modest motion from the original state. This does not change the
/// point count, impulses, etc. The radii must come from the Shapes
/// that generated the manifold.
/// </summary>
internal static void InitializeManifold(
ref Manifold manifold,
in Transform xfA,
in Transform xfB,
float radiusA,
float radiusB,
out Vector2 normal,
Span<Vector2> points)
{
normal = Vector2.Zero;
if (manifold.PointCount == 0)
{
return;
}
switch (manifold.Type)
{
case ManifoldType.Circles:
{
normal = new Vector2(1.0f, 0.0f);
Vector2 pointA = Physics.Transform.Mul(xfA, manifold.LocalPoint);
Vector2 pointB = Physics.Transform.Mul(xfB, manifold.Points[0].LocalPoint);
if ((pointA - pointB).LengthSquared() > float.Epsilon * float.Epsilon)
{
normal = pointB - pointA;
normal = normal.Normalized();
}
Vector2 cA = pointA + normal * radiusA;
Vector2 cB = pointB - normal * radiusB;
points[0] = (cA + cB) * 0.5f;
}
break;
case ManifoldType.FaceA:
{
normal = Physics.Transform.Mul(xfA.Quaternion2D, manifold.LocalNormal);
Vector2 planePoint = Physics.Transform.Mul(xfA, manifold.LocalPoint);
for (int i = 0; i < manifold.PointCount; ++i)
{
Vector2 clipPoint = Physics.Transform.Mul(xfB, manifold.Points[i].LocalPoint);
Vector2 cA = clipPoint + normal * (radiusA - Vector2.Dot(clipPoint - planePoint, normal));
Vector2 cB = clipPoint - normal * radiusB;
points[i] = (cA + cB) * 0.5f;
}
}
break;
case ManifoldType.FaceB:
{
normal = Physics.Transform.Mul(xfB.Quaternion2D, manifold.LocalNormal);
Vector2 planePoint = Physics.Transform.Mul(xfB, manifold.LocalPoint);
for (int i = 0; i < manifold.PointCount; ++i)
{
Vector2 clipPoint = Physics.Transform.Mul(xfA, manifold.Points[i].LocalPoint);
Vector2 cB = clipPoint + normal * (radiusB - Vector2.Dot(clipPoint - planePoint, normal));
Vector2 cA = clipPoint - normal * radiusA;
points[i] = (cA + cB) * 0.5f;
}
// Ensure normal points from A to B.
normal = -normal;
}
break;
default:
// Shouldn't happentm
throw new InvalidOperationException();
}
}
private static void PositionSolverManifoldInitialize(
in ContactPositionConstraint pc,
int index,
in Transform xfA,
in Transform xfB,
out Vector2 normal,
out Vector2 point,
out float separation)
{
DebugTools.Assert(pc.PointCount > 0);
switch (pc.Type)
{
case ManifoldType.Circles:
{
Vector2 pointA = Physics.Transform.Mul(xfA, pc.LocalPoint);
Vector2 pointB = Physics.Transform.Mul(xfB, pc.LocalPoints[0]);
normal = pointB - pointA;
//FPE: Fix to handle zero normalization
if (normal != Vector2.Zero)
normal = normal.Normalized();
point = (pointA + pointB) * 0.5f;
separation = Vector2.Dot(pointB - pointA, normal) - pc.RadiusA - pc.RadiusB;
}
break;
case ManifoldType.FaceA:
{
normal = Physics.Transform.Mul(xfA.Quaternion2D, pc.LocalNormal);
Vector2 planePoint = Physics.Transform.Mul(xfA, pc.LocalPoint);
Vector2 clipPoint = Physics.Transform.Mul(xfB, pc.LocalPoints[index]);
separation = Vector2.Dot(clipPoint - planePoint, normal) - pc.RadiusA - pc.RadiusB;
point = clipPoint;
}
break;
case ManifoldType.FaceB:
{
normal = Physics.Transform.Mul(xfB.Quaternion2D, pc.LocalNormal);
Vector2 planePoint = Physics.Transform.Mul(xfB, pc.LocalPoint);
Vector2 clipPoint = Physics.Transform.Mul(xfA, pc.LocalPoints[index]);
separation = Vector2.Dot(clipPoint - planePoint, normal) - pc.RadiusA - pc.RadiusB;
point = clipPoint;
// Ensure normal points from A to B
normal = -normal;
}
break;
default:
normal = Vector2.Zero;
point = Vector2.Zero;
separation = 0;
break;
}
}
}