mirror of
https://github.com/space-wizards/RobustToolbox.git
synced 2026-02-15 03:30:53 +01:00
* Physics worlds * Paul's a good boy * Build working * Ingame and not lagging to hell * Why didn't you commit ahhhhh * Hard collisions working * Solver parity * Decent broadphase work done * BroadPhase outline done * BroadPhase working * waiting for pvs * Fix static PVS AABB * Stop static bodies from awakening * Optimise a bunch of stuff * Even more broadphase stuff * I'm fucking stupid * Optimise fixture updates * Collision solver start * Building * A is for Argumentative * Fix contact caching island flags * Circle shapes actually workeded * Damping * DS2 consumables only * Slightly more stable * Even slightlier more stablier * VV your heart out * Initial joint support * 90% of joints I just wanted to push as I'd scream if I lost progress * JOINT PURGATORY * Joints barely functional lmao * Okay these joints slightly more functional * Remove station FrictionJoint * Also that * Some Box2D ports * Cleanup mass * Edge shape * Active contacts * Fix active contacts * Optimise active contacts even more * Boxes be stacking * I would die for smug oh my fucking god * In which everything is fixed * Distance joints working LETS GO * Remove frequency on distancejoint * Fix some stuff and break joints * Crashing fixed mehbeh * ICollideSpecial and more resilience * auto-clear * showbb vera * Slap that TODO in there * Fix restartround crash * Random fixes * Fix fixture networking * Add intersection method for broadphase * Fix contacts * Licenses done * Optimisations * Fix wall clips * Config caching for island * allocations optimisations * Optimise casts * Optimise events queue for physics * Contact manager optimisations * Optimise controllers * Sloth joint or something idk * Controller graph * Remove content cvar * Random cleanup * Finally remove VirtualController * Manifold structs again * Optimise this absolute retardation * Optimise * fix license * Cleanup physics interface * AHHHHHHHHHHHHH * Fix collisions again * snivybus * Fix potential nasty manifold bug * Tests go snivy Co-authored-by: Metal Gear Sloth <metalgearsloth@gmail.com>
862 lines
36 KiB
C#
862 lines
36 KiB
C#
/*
|
|
* Farseer Physics Engine:
|
|
* Copyright (c) 2012 Ian Qvist
|
|
*
|
|
* Original source Box2D:
|
|
* Copyright (c) 2006-2011 Erin Catto http://www.box2d.org
|
|
*
|
|
* This software is provided 'as-is', without any express or implied
|
|
* warranty. In no event will the authors be held liable for any damages
|
|
* arising from the use of this software.
|
|
* Permission is granted to anyone to use this software for any purpose,
|
|
* including commercial applications, and to alter it and redistribute it
|
|
* freely, subject to the following restrictions:
|
|
* 1. The origin of this software must not be misrepresented; you must not
|
|
* claim that you wrote the original software. If you use this software
|
|
* in a product, an acknowledgment in the product documentation would be
|
|
* appreciated but is not required.
|
|
* 2. Altered source versions must be plainly marked as such, and must not be
|
|
* misrepresented as being the original software.
|
|
* 3. This notice may not be removed or altered from any source distribution.
|
|
*/
|
|
|
|
using System;
|
|
using Robust.Shared.Configuration;
|
|
using Robust.Shared.IoC;
|
|
using Robust.Shared.Maths;
|
|
using Robust.Shared.Physics.Collision;
|
|
using Robust.Shared.Utility;
|
|
|
|
namespace Robust.Shared.Physics.Dynamics.Contacts
|
|
{
|
|
internal sealed class ContactSolver
|
|
{
|
|
[Dependency] private readonly IConfigurationManager _configManager = default!;
|
|
|
|
private bool _warmStarting;
|
|
private float _velocityThreshold;
|
|
private float _baumgarte;
|
|
private float _linearSlop;
|
|
private float _maxLinearCorrection;
|
|
|
|
private Vector2[] _linearVelocities = Array.Empty<Vector2>();
|
|
private float[] _angularVelocities = Array.Empty<float>();
|
|
|
|
private Vector2[] _positions = Array.Empty<Vector2>();
|
|
private float[] _angles = Array.Empty<float>();
|
|
|
|
private Contact[] _contacts = Array.Empty<Contact>();
|
|
private int _contactCount;
|
|
|
|
private ContactVelocityConstraint[] _velocityConstraints = Array.Empty<ContactVelocityConstraint>();
|
|
private ContactPositionConstraint[] _positionConstraints = Array.Empty<ContactPositionConstraint>();
|
|
|
|
public void Initialize()
|
|
{
|
|
IoCManager.InjectDependencies(this);
|
|
|
|
_warmStarting = _configManager.GetCVar(CVars.WarmStarting);
|
|
_configManager.OnValueChanged(CVars.WarmStarting, value => _warmStarting = value);
|
|
|
|
_velocityThreshold = _configManager.GetCVar(CVars.VelocityThreshold);
|
|
_configManager.OnValueChanged(CVars.VelocityThreshold, value => _velocityThreshold = value);
|
|
|
|
_baumgarte = _configManager.GetCVar(CVars.Baumgarte);
|
|
_configManager.OnValueChanged(CVars.Baumgarte, value => _baumgarte = value);
|
|
|
|
_linearSlop = _configManager.GetCVar(CVars.LinearSlop);
|
|
_configManager.OnValueChanged(CVars.LinearSlop, value => _linearSlop = value);
|
|
|
|
_maxLinearCorrection = _configManager.GetCVar(CVars.MaxLinearCorrection);
|
|
_configManager.OnValueChanged(CVars.MaxLinearCorrection, value => _maxLinearCorrection = value);
|
|
}
|
|
|
|
public void Reset(SolverData data, int contactCount, Contact[] contacts)
|
|
{
|
|
_linearVelocities = data.LinearVelocities;
|
|
_angularVelocities = data.AngularVelocities;
|
|
|
|
_positions = data.Positions;
|
|
_positions = data.Positions;
|
|
_angles = data.Angles;
|
|
|
|
_contactCount = contactCount;
|
|
_contacts = contacts;
|
|
|
|
// If we need more constraints then grow the cached arrays
|
|
if (_velocityConstraints.Length < contactCount)
|
|
{
|
|
var oldLength = _velocityConstraints.Length;
|
|
|
|
Array.Resize(ref _velocityConstraints, contactCount * 2);
|
|
Array.Resize(ref _positionConstraints, contactCount * 2);
|
|
|
|
for (var i = oldLength; i < _velocityConstraints.Length; i++)
|
|
{
|
|
_velocityConstraints[i] = new ContactVelocityConstraint();
|
|
_positionConstraints[i] = new ContactPositionConstraint();
|
|
}
|
|
}
|
|
|
|
// Build constraints
|
|
// For now these are going to be bare but will change
|
|
for (var i = 0; i < _contactCount; i++)
|
|
{
|
|
var contact = contacts[i];
|
|
Fixture fixtureA = contact.FixtureA!;
|
|
Fixture fixtureB = contact.FixtureB!;
|
|
var shapeA = fixtureA.Shape;
|
|
var shapeB = fixtureB.Shape;
|
|
float radiusA = shapeA.Radius;
|
|
float radiusB = shapeB.Radius;
|
|
var bodyA = fixtureA.Body;
|
|
var bodyB = fixtureB.Body;
|
|
var manifold = contact.Manifold;
|
|
|
|
int pointCount = manifold.PointCount;
|
|
DebugTools.Assert(pointCount > 0);
|
|
|
|
var velocityConstraint = _velocityConstraints[i];
|
|
velocityConstraint.Friction = contact.Friction;
|
|
velocityConstraint.Restitution = contact.Restitution;
|
|
velocityConstraint.TangentSpeed = contact.TangentSpeed;
|
|
velocityConstraint.IndexA = bodyA.IslandIndex;
|
|
velocityConstraint.IndexB = bodyB.IslandIndex;
|
|
velocityConstraint.InvMassA = bodyA.InvMass;
|
|
velocityConstraint.InvMassB = bodyB.InvMass;
|
|
velocityConstraint.InvIA = bodyA.InvI;
|
|
velocityConstraint.InvIB = bodyB.InvI;
|
|
velocityConstraint.ContactIndex = i;
|
|
velocityConstraint.PointCount = pointCount;
|
|
|
|
for (var x = 0; x < 2; x++)
|
|
{
|
|
velocityConstraint.K[x] = Vector2.Zero;
|
|
velocityConstraint.NormalMass[x] = Vector2.Zero;
|
|
}
|
|
|
|
var positionConstraint = _positionConstraints[i];
|
|
positionConstraint.IndexA = bodyA.IslandIndex;
|
|
positionConstraint.IndexB = bodyB.IslandIndex;
|
|
positionConstraint.InvMassA = bodyA.InvMass;
|
|
positionConstraint.InvMassB = bodyB.InvMass;
|
|
// TODO: Dis
|
|
// positionConstraint.LocalCenterA = bodyA._sweep.LocalCenter;
|
|
// positionConstraint.LocalCenterB = bodyB._sweep.LocalCenter;
|
|
positionConstraint.LocalCenterA = bodyA.LocalCenter;
|
|
positionConstraint.LocalCenterB = bodyB.LocalCenter;
|
|
|
|
positionConstraint.InvIA = bodyA.InvI;
|
|
positionConstraint.InvIB = bodyB.InvI;
|
|
positionConstraint.LocalNormal = manifold.LocalNormal;
|
|
positionConstraint.LocalPoint = manifold.LocalPoint;
|
|
positionConstraint.PointCount = pointCount;
|
|
positionConstraint.RadiusA = radiusA;
|
|
positionConstraint.RadiusB = radiusB;
|
|
positionConstraint.Type = manifold.Type;
|
|
|
|
for (int j = 0; j < pointCount; ++j)
|
|
{
|
|
var contactPoint = manifold.Points[j];
|
|
var constraintPoint = velocityConstraint.Points[j];
|
|
|
|
if (_warmStarting)
|
|
{
|
|
constraintPoint.NormalImpulse = data.DtRatio * contactPoint.NormalImpulse;
|
|
constraintPoint.TangentImpulse = data.DtRatio * contactPoint.TangentImpulse;
|
|
}
|
|
else
|
|
{
|
|
constraintPoint.NormalImpulse = 0.0f;
|
|
constraintPoint.TangentImpulse = 0.0f;
|
|
}
|
|
|
|
constraintPoint.RelativeVelocityA = Vector2.Zero;
|
|
constraintPoint.RelativeVelocityB = Vector2.Zero;
|
|
constraintPoint.NormalMass = 0.0f;
|
|
constraintPoint.TangentMass = 0.0f;
|
|
constraintPoint.VelocityBias = 0.0f;
|
|
|
|
positionConstraint.LocalPoints[j] = contactPoint.LocalPoint;
|
|
}
|
|
}
|
|
}
|
|
|
|
public void InitializeVelocityConstraints()
|
|
{
|
|
for (var i = 0; i < _contactCount; ++i)
|
|
{
|
|
var velocityConstraint = _velocityConstraints[i];
|
|
var positionConstraint = _positionConstraints[i];
|
|
|
|
var radiusA = positionConstraint.RadiusA;
|
|
var radiusB = positionConstraint.RadiusB;
|
|
var manifold = _contacts[velocityConstraint.ContactIndex].Manifold;
|
|
|
|
var indexA = velocityConstraint.IndexA;
|
|
var indexB = velocityConstraint.IndexB;
|
|
|
|
var invMassA = velocityConstraint.InvMassA;
|
|
var invMassB = velocityConstraint.InvMassB;
|
|
var invIA = velocityConstraint.InvIA;
|
|
var invIB = velocityConstraint.InvIB;
|
|
var localCenterA = positionConstraint.LocalCenterA;
|
|
var localCenterB = positionConstraint.LocalCenterB;
|
|
|
|
var centerA = _positions[indexA];
|
|
var angleA = _angles[indexA];
|
|
var linVelocityA = _linearVelocities[indexA];
|
|
var angVelocityA = _angularVelocities[indexA];
|
|
|
|
var centerB = _positions[indexB];
|
|
var angleB = _angles[indexB];
|
|
var linVelocityB = _linearVelocities[indexB];
|
|
var angVelocityB = _angularVelocities[indexB];
|
|
|
|
DebugTools.Assert(manifold.PointCount > 0);
|
|
|
|
Transform xfA = new Transform(angleA);
|
|
Transform xfB = new Transform(angleB);
|
|
xfA.Position = centerA - Transform.Mul(xfA.Quaternion2D, localCenterA);
|
|
xfB.Position = centerB - Transform.Mul(xfB.Quaternion2D, localCenterB);
|
|
|
|
Vector2 normal;
|
|
var points = new Vector2[2];
|
|
InitializeManifold(manifold, xfA, xfB, radiusA, radiusB, out normal, out points);
|
|
|
|
velocityConstraint.Normal = normal;
|
|
|
|
int pointCount = velocityConstraint.PointCount;
|
|
|
|
for (int j = 0; j < pointCount; ++j)
|
|
{
|
|
VelocityConstraintPoint vcp = velocityConstraint.Points[j];
|
|
|
|
vcp.RelativeVelocityA = points[j] - centerA;
|
|
vcp.RelativeVelocityB = points[j] - centerB;
|
|
|
|
float rnA = Vector2.Cross(vcp.RelativeVelocityA, velocityConstraint.Normal);
|
|
float rnB = Vector2.Cross(vcp.RelativeVelocityB, velocityConstraint.Normal);
|
|
|
|
float kNormal = invMassA + invMassB + invIA * rnA * rnA + invIB * rnB * rnB;
|
|
|
|
vcp.NormalMass = kNormal > 0.0f ? 1.0f / kNormal : 0.0f;
|
|
|
|
Vector2 tangent = Vector2.Cross(velocityConstraint.Normal, 1.0f);
|
|
|
|
float rtA = Vector2.Cross(vcp.RelativeVelocityA, tangent);
|
|
float rtB = Vector2.Cross(vcp.RelativeVelocityB, tangent);
|
|
|
|
float kTangent = invMassA + invMassB + invIA * rtA * rtA + invIB * rtB * rtB;
|
|
|
|
vcp.TangentMass = kTangent > 0.0f ? 1.0f / kTangent : 0.0f;
|
|
|
|
// Setup a velocity bias for restitution.
|
|
vcp.VelocityBias = 0.0f;
|
|
float vRel = Vector2.Dot(velocityConstraint.Normal, linVelocityB + Vector2.Cross(angVelocityB, vcp.RelativeVelocityB) - linVelocityA - Vector2.Cross(angVelocityA, vcp.RelativeVelocityA));
|
|
if (vRel < -_velocityThreshold)
|
|
{
|
|
vcp.VelocityBias = -velocityConstraint.Restitution * vRel;
|
|
}
|
|
}
|
|
|
|
// If we have two points, then prepare the block solver.
|
|
if (velocityConstraint.PointCount == 2)
|
|
{
|
|
var vcp1 = velocityConstraint.Points[0];
|
|
var vcp2 = velocityConstraint.Points[1];
|
|
|
|
var rn1A = Vector2.Cross(vcp1.RelativeVelocityA, velocityConstraint.Normal);
|
|
var rn1B = Vector2.Cross(vcp1.RelativeVelocityB, velocityConstraint.Normal);
|
|
var rn2A = Vector2.Cross(vcp2.RelativeVelocityA, velocityConstraint.Normal);
|
|
var rn2B = Vector2.Cross(vcp2.RelativeVelocityB, velocityConstraint.Normal);
|
|
|
|
var k11 = invMassA + invMassB + invIA * rn1A * rn1A + invIB * rn1B * rn1B;
|
|
var k22 = invMassA + invMassB + invIA * rn2A * rn2A + invIB * rn2B * rn2B;
|
|
var k12 = invMassA + invMassB + invIA * rn1A * rn2A + invIB * rn1B * rn2B;
|
|
|
|
// Ensure a reasonable condition number.
|
|
const float k_maxConditionNumber = 1000.0f;
|
|
if (k11 * k11 < k_maxConditionNumber * (k11 * k22 - k12 * k12))
|
|
{
|
|
// K is safe to invert.
|
|
velocityConstraint.K[0] = new Vector2(k11, k12);
|
|
velocityConstraint.K[1] = new Vector2(k12, k22);
|
|
velocityConstraint.NormalMass = velocityConstraint.K.Inverse();
|
|
}
|
|
else
|
|
{
|
|
// The constraints are redundant, just use one.
|
|
// TODO_ERIN use deepest?
|
|
velocityConstraint.PointCount = 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
public void WarmStart()
|
|
{
|
|
for (var i = 0; i < _contactCount; ++i)
|
|
{
|
|
var velocityConstraint = _velocityConstraints[i];
|
|
|
|
var indexA = velocityConstraint.IndexA;
|
|
var indexB = velocityConstraint.IndexB;
|
|
var invMassA = velocityConstraint.InvMassA;
|
|
var invIA = velocityConstraint.InvIA;
|
|
var invMassB = velocityConstraint.InvMassB;
|
|
var invIB = velocityConstraint.InvIB;
|
|
var pointCount = velocityConstraint.PointCount;
|
|
|
|
var linVelocityA = _linearVelocities[indexA];
|
|
var angVelocityA = _angularVelocities[indexA];
|
|
var linVelocityB = _linearVelocities[indexB];
|
|
var angVelocityB = _angularVelocities[indexB];
|
|
|
|
var normal = velocityConstraint.Normal;
|
|
var tangent = Vector2.Cross(normal, 1.0f);
|
|
|
|
for (var j = 0; j < pointCount; ++j)
|
|
{
|
|
var constraintPoint = velocityConstraint.Points[j];
|
|
var P = normal * constraintPoint.NormalImpulse + tangent * constraintPoint.TangentImpulse;
|
|
angVelocityA -= invIA * Vector2.Cross(constraintPoint.RelativeVelocityA, P);
|
|
linVelocityA -= P * invMassA;
|
|
angVelocityB += invIB * Vector2.Cross(constraintPoint.RelativeVelocityB, P);
|
|
linVelocityB += P * invMassB;
|
|
}
|
|
|
|
_linearVelocities[indexA] = linVelocityA;
|
|
_angularVelocities[indexA] = angVelocityA;
|
|
_linearVelocities[indexB] = linVelocityB;
|
|
_angularVelocities[indexB] = angVelocityB;
|
|
}
|
|
}
|
|
|
|
public void SolveVelocityConstraints()
|
|
{
|
|
// Here be dragons
|
|
for (var i = 0; i < _contactCount; ++i)
|
|
{
|
|
var velocityConstraint = _velocityConstraints[i];
|
|
|
|
var indexA = velocityConstraint.IndexA;
|
|
var indexB = velocityConstraint.IndexB;
|
|
var mA = velocityConstraint.InvMassA;
|
|
var iA = velocityConstraint.InvIA;
|
|
var mB = velocityConstraint.InvMassB;
|
|
var iB = velocityConstraint.InvIB;
|
|
var pointCount = velocityConstraint.PointCount;
|
|
|
|
var vA = _linearVelocities[indexA];
|
|
var wA = _angularVelocities[indexA];
|
|
var vB = _linearVelocities[indexB];
|
|
var wB = _angularVelocities[indexB];
|
|
|
|
var normal = velocityConstraint.Normal;
|
|
var tangent = Vector2.Cross(normal, 1.0f);
|
|
var friction = velocityConstraint.Friction;
|
|
|
|
DebugTools.Assert(pointCount == 1 || pointCount == 2);
|
|
|
|
// Solve tangent constraints first because non-penetration is more important
|
|
// than friction.
|
|
for (var j = 0; j < pointCount; ++j)
|
|
{
|
|
VelocityConstraintPoint velConstraintPoint = velocityConstraint.Points[j];
|
|
|
|
// Relative velocity at contact
|
|
var dv = vB + Vector2.Cross(wB, velConstraintPoint.RelativeVelocityB) - vA - Vector2.Cross(wA, velConstraintPoint.RelativeVelocityA);
|
|
|
|
// Compute tangent force
|
|
float vt = Vector2.Dot(dv, tangent) - velocityConstraint.TangentSpeed;
|
|
float lambda = velConstraintPoint.TangentMass * (-vt);
|
|
|
|
// b2Clamp the accumulated force
|
|
var maxFriction = friction * velConstraintPoint.NormalImpulse;
|
|
var newImpulse = Math.Clamp(velConstraintPoint.TangentImpulse + lambda, -maxFriction, maxFriction);
|
|
lambda = newImpulse - velConstraintPoint.TangentImpulse;
|
|
velConstraintPoint.TangentImpulse = newImpulse;
|
|
|
|
// Apply contact impulse
|
|
Vector2 P = tangent * lambda;
|
|
|
|
vA -= P * mA;
|
|
wA -= iA * Vector2.Cross(velConstraintPoint.RelativeVelocityA, P);
|
|
|
|
vB += P * mB;
|
|
wB += iB * Vector2.Cross(velConstraintPoint.RelativeVelocityB, P);
|
|
}
|
|
|
|
// Solve normal constraints
|
|
if (velocityConstraint.PointCount == 1)
|
|
{
|
|
VelocityConstraintPoint vcp = velocityConstraint.Points[0];
|
|
|
|
// Relative velocity at contact
|
|
Vector2 dv = vB + Vector2.Cross(wB, vcp.RelativeVelocityB) - vA - Vector2.Cross(wA, vcp.RelativeVelocityA);
|
|
|
|
// Compute normal impulse
|
|
float vn = Vector2.Dot(dv, normal);
|
|
float lambda = -vcp.NormalMass * (vn - vcp.VelocityBias);
|
|
|
|
// b2Clamp the accumulated impulse
|
|
float newImpulse = Math.Max(vcp.NormalImpulse + lambda, 0.0f);
|
|
lambda = newImpulse - vcp.NormalImpulse;
|
|
vcp.NormalImpulse = newImpulse;
|
|
|
|
// Apply contact impulse
|
|
Vector2 P = normal * lambda;
|
|
vA -= P * mA;
|
|
wA -= iA * Vector2.Cross(vcp.RelativeVelocityA, P);
|
|
|
|
vB += P * mB;
|
|
wB += iB * Vector2.Cross(vcp.RelativeVelocityB, P);
|
|
}
|
|
else
|
|
{
|
|
// Block solver developed in collaboration with Dirk Gregorius (back in 01/07 on Box2D_Lite).
|
|
// Build the mini LCP for this contact patch
|
|
//
|
|
// vn = A * x + b, vn >= 0, , vn >= 0, x >= 0 and vn_i * x_i = 0 with i = 1..2
|
|
//
|
|
// A = J * W * JT and J = ( -n, -r1 x n, n, r2 x n )
|
|
// b = vn0 - velocityBias
|
|
//
|
|
// The system is solved using the "Total enumeration method" (s. Murty). The complementary constraint vn_i * x_i
|
|
// implies that we must have in any solution either vn_i = 0 or x_i = 0. So for the 2D contact problem the cases
|
|
// vn1 = 0 and vn2 = 0, x1 = 0 and x2 = 0, x1 = 0 and vn2 = 0, x2 = 0 and vn1 = 0 need to be tested. The first valid
|
|
// solution that satisfies the problem is chosen.
|
|
//
|
|
// In order to account of the accumulated impulse 'a' (because of the iterative nature of the solver which only requires
|
|
// that the accumulated impulse is clamped and not the incremental impulse) we change the impulse variable (x_i).
|
|
//
|
|
// Substitute:
|
|
//
|
|
// x = a + d
|
|
//
|
|
// a := old total impulse
|
|
// x := new total impulse
|
|
// d := incremental impulse
|
|
//
|
|
// For the current iteration we extend the formula for the incremental impulse
|
|
// to compute the new total impulse:
|
|
//
|
|
// vn = A * d + b
|
|
// = A * (x - a) + b
|
|
// = A * x + b - A * a
|
|
// = A * x + b'
|
|
// b' = b - A * a;
|
|
|
|
VelocityConstraintPoint cp1 = velocityConstraint.Points[0];
|
|
VelocityConstraintPoint cp2 = velocityConstraint.Points[1];
|
|
|
|
Vector2 a = new Vector2(cp1.NormalImpulse, cp2.NormalImpulse);
|
|
DebugTools.Assert(a.X >= 0.0f && a.Y >= 0.0f);
|
|
|
|
// Relative velocity at contact
|
|
Vector2 dv1 = vB + Vector2.Cross(wB, cp1.RelativeVelocityB) - vA - Vector2.Cross(wA, cp1.RelativeVelocityA);
|
|
Vector2 dv2 = vB + Vector2.Cross(wB, cp2.RelativeVelocityB) - vA - Vector2.Cross(wA, cp2.RelativeVelocityA);
|
|
|
|
// Compute normal velocity
|
|
float vn1 = Vector2.Dot(dv1, normal);
|
|
float vn2 = Vector2.Dot(dv2, normal);
|
|
|
|
Vector2 b = new Vector2
|
|
{
|
|
X = vn1 - cp1.VelocityBias,
|
|
Y = vn2 - cp2.VelocityBias
|
|
};
|
|
|
|
// Compute b'
|
|
b -= Transform.Mul(velocityConstraint.K, a);
|
|
|
|
//const float k_errorTol = 1e-3f;
|
|
//B2_NOT_USED(k_errorTol);
|
|
|
|
for (; ; )
|
|
{
|
|
//
|
|
// Case 1: vn = 0
|
|
//
|
|
// 0 = A * x + b'
|
|
//
|
|
// Solve for x:
|
|
//
|
|
// x = - inv(A) * b'
|
|
//
|
|
Vector2 x = -Transform.Mul(velocityConstraint.NormalMass, b);
|
|
|
|
if (x.X >= 0.0f && x.Y >= 0.0f)
|
|
{
|
|
// Get the incremental impulse
|
|
Vector2 d = x - a;
|
|
|
|
// Apply incremental impulse
|
|
Vector2 P1 = normal * d.X;
|
|
Vector2 P2 = normal * d.Y;
|
|
vA -= (P1 + P2) * mA;
|
|
wA -= iA * (Vector2.Cross(cp1.RelativeVelocityA, P1) + Vector2.Cross(cp2.RelativeVelocityA, P2));
|
|
|
|
vB += (P1 + P2) * mB;
|
|
wB += iB * (Vector2.Cross(cp1.RelativeVelocityB, P1) + Vector2.Cross(cp2.RelativeVelocityB, P2));
|
|
|
|
// Accumulate
|
|
cp1.NormalImpulse = x.X;
|
|
cp2.NormalImpulse = x.Y;
|
|
|
|
break;
|
|
}
|
|
|
|
//
|
|
// Case 2: vn1 = 0 and x2 = 0
|
|
//
|
|
// 0 = a11 * x1 + a12 * 0 + b1'
|
|
// vn2 = a21 * x1 + a22 * 0 + b2'
|
|
//
|
|
x.X = -cp1.NormalMass * b.X;
|
|
x.Y = 0.0f;
|
|
vn1 = 0.0f;
|
|
vn2 = velocityConstraint.K[0].Y * x.X + b.Y;
|
|
|
|
if (x.X >= 0.0f && vn2 >= 0.0f)
|
|
{
|
|
// Get the incremental impulse
|
|
Vector2 d = x - a;
|
|
|
|
// Apply incremental impulse
|
|
Vector2 P1 = normal * d.X;
|
|
Vector2 P2 = normal * d.Y;
|
|
vA -= (P1 + P2) * mA;
|
|
wA -= iA * (Vector2.Cross(cp1.RelativeVelocityA, P1) + Vector2.Cross(cp2.RelativeVelocityA, P2));
|
|
|
|
vB += (P1 + P2) * mB;
|
|
wB += iB * (Vector2.Cross(cp1.RelativeVelocityB, P1) + Vector2.Cross(cp2.RelativeVelocityB, P2));
|
|
|
|
// Accumulate
|
|
cp1.NormalImpulse = x.X;
|
|
cp2.NormalImpulse = x.Y;
|
|
|
|
break;
|
|
}
|
|
|
|
|
|
//
|
|
// Case 3: vn2 = 0 and x1 = 0
|
|
//
|
|
// vn1 = a11 * 0 + a12 * x2 + b1'
|
|
// 0 = a21 * 0 + a22 * x2 + b2'
|
|
//
|
|
x.X = 0.0f;
|
|
x.Y = -cp2.NormalMass * b.Y;
|
|
vn1 = velocityConstraint.K[1].X * x.Y + b.X;
|
|
vn2 = 0.0f;
|
|
|
|
if (x.Y >= 0.0f && vn1 >= 0.0f)
|
|
{
|
|
// Resubstitute for the incremental impulse
|
|
Vector2 d = x - a;
|
|
|
|
// Apply incremental impulse
|
|
Vector2 P1 = normal * d.X;
|
|
Vector2 P2 = normal * d.Y;
|
|
vA -= (P1 + P2) * mA;
|
|
wA -= iA * (Vector2.Cross(cp1.RelativeVelocityA, P1) + Vector2.Cross(cp2.RelativeVelocityA, P2));
|
|
|
|
vB += (P1 + P2) * mB;
|
|
wB += iB * (Vector2.Cross(cp1.RelativeVelocityB, P1) + Vector2.Cross(cp2.RelativeVelocityB, P2));
|
|
|
|
// Accumulate
|
|
cp1.NormalImpulse = x.X;
|
|
cp2.NormalImpulse = x.Y;
|
|
|
|
break;
|
|
}
|
|
|
|
//
|
|
// Case 4: x1 = 0 and x2 = 0
|
|
//
|
|
// vn1 = b1
|
|
// vn2 = b2;
|
|
x.X = 0.0f;
|
|
x.Y = 0.0f;
|
|
vn1 = b.X;
|
|
vn2 = b.Y;
|
|
|
|
if (vn1 >= 0.0f && vn2 >= 0.0f)
|
|
{
|
|
// Resubstitute for the incremental impulse
|
|
Vector2 d = x - a;
|
|
|
|
// Apply incremental impulse
|
|
Vector2 P1 = normal * d.X;
|
|
Vector2 P2 = normal * d.Y;
|
|
vA -= (P1 + P2) * mA;
|
|
wA -= iA * (Vector2.Cross(cp1.RelativeVelocityA, P1) + Vector2.Cross(cp2.RelativeVelocityA, P2));
|
|
|
|
vB += (P1 + P2) * mB;
|
|
wB += iB * (Vector2.Cross(cp1.RelativeVelocityB, P1) + Vector2.Cross(cp2.RelativeVelocityB, P2));
|
|
|
|
// Accumulate
|
|
cp1.NormalImpulse = x.X;
|
|
cp2.NormalImpulse = x.Y;
|
|
|
|
break;
|
|
}
|
|
|
|
// No solution, give up. This is hit sometimes, but it doesn't seem to matter.
|
|
break;
|
|
}
|
|
}
|
|
|
|
_linearVelocities[indexA] = vA;
|
|
_angularVelocities[indexA] = wA;
|
|
_linearVelocities[indexB] = vB;
|
|
_angularVelocities[indexB] = wB;
|
|
}
|
|
}
|
|
|
|
public void StoreImpulses()
|
|
{
|
|
for (int i = 0; i < _contactCount; ++i)
|
|
{
|
|
ContactVelocityConstraint velocityConstraint = _velocityConstraints[i];
|
|
Collision.Manifold manifold = _contacts[velocityConstraint.ContactIndex].Manifold;
|
|
|
|
for (int j = 0; j < velocityConstraint.PointCount; ++j)
|
|
{
|
|
ManifoldPoint point = manifold.Points[j];
|
|
point.NormalImpulse = velocityConstraint.Points[j].NormalImpulse;
|
|
point.TangentImpulse = velocityConstraint.Points[j].TangentImpulse;
|
|
manifold.Points[j] = point;
|
|
}
|
|
|
|
_contacts[velocityConstraint.ContactIndex].Manifold = manifold;
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Tries to solve positions for all contacts specified.
|
|
/// </summary>
|
|
/// <returns>true if all positions solved</returns>
|
|
public bool SolvePositionConstraints()
|
|
{
|
|
float minSeparation = 0.0f;
|
|
|
|
for (int i = 0; i < _contactCount; ++i)
|
|
{
|
|
ContactPositionConstraint pc = _positionConstraints[i];
|
|
|
|
int indexA = pc.IndexA;
|
|
int indexB = pc.IndexB;
|
|
Vector2 localCenterA = pc.LocalCenterA;
|
|
float mA = pc.InvMassA;
|
|
float iA = pc.InvIA;
|
|
Vector2 localCenterB = pc.LocalCenterB;
|
|
float mB = pc.InvMassB;
|
|
float iB = pc.InvIB;
|
|
int pointCount = pc.PointCount;
|
|
|
|
Vector2 centerA = _positions[indexA];
|
|
float angleA = _angles[indexA];
|
|
|
|
Vector2 centerB = _positions[indexB];
|
|
float angleB = _angles[indexB];
|
|
|
|
// Solve normal constraints
|
|
for (int j = 0; j < pointCount; ++j)
|
|
{
|
|
Transform xfA = new Transform(angleA);
|
|
Transform xfB = new Transform(angleB);
|
|
xfA.Position = centerA - Transform.Mul(xfA.Quaternion2D, localCenterA);
|
|
xfB.Position = centerB - Transform.Mul(xfB.Quaternion2D, localCenterB);
|
|
|
|
Vector2 normal;
|
|
Vector2 point;
|
|
float separation;
|
|
|
|
PositionSolverManifoldInitialize(pc, j, xfA, xfB, out normal, out point, out separation);
|
|
|
|
Vector2 rA = point - centerA;
|
|
Vector2 rB = point - centerB;
|
|
|
|
// Track max constraint error.
|
|
minSeparation = Math.Min(minSeparation, separation);
|
|
|
|
// Prevent large corrections and allow slop.
|
|
float C = Math.Clamp(_baumgarte * (separation + _linearSlop), -_maxLinearCorrection, 0.0f);
|
|
|
|
// Compute the effective mass.
|
|
float rnA = Vector2.Cross(rA, normal);
|
|
float rnB = Vector2.Cross(rB, normal);
|
|
float K = mA + mB + iA * rnA * rnA + iB * rnB * rnB;
|
|
|
|
// Compute normal impulse
|
|
float impulse = K > 0.0f ? -C / K : 0.0f;
|
|
|
|
Vector2 P = normal * impulse;
|
|
|
|
centerA -= P * mA;
|
|
angleA -= iA * Vector2.Cross(rA, P);
|
|
|
|
centerB += P * mB;
|
|
angleB += iB * Vector2.Cross(rB, P);
|
|
}
|
|
|
|
_positions[indexA] = centerA;
|
|
_angles[indexA] = angleA;
|
|
|
|
_positions[indexB] = centerB;
|
|
_angles[indexB] = angleB;
|
|
}
|
|
|
|
// We can't expect minSpeparation >= -b2_linearSlop because we don't
|
|
// push the separation above -b2_linearSlop.
|
|
return minSeparation >= -3.0f * _linearSlop;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Evaluate the manifold with supplied transforms. This assumes
|
|
/// modest motion from the original state. This does not change the
|
|
/// point count, impulses, etc. The radii must come from the Shapes
|
|
/// that generated the manifold.
|
|
/// </summary>
|
|
internal static void InitializeManifold(
|
|
in Collision.Manifold manifold,
|
|
in Transform xfA,
|
|
in Transform xfB,
|
|
float radiusA,
|
|
float radiusB,
|
|
out Vector2 normal,
|
|
out Vector2[] points)
|
|
{
|
|
normal = Vector2.Zero;
|
|
points = new Vector2[2];
|
|
|
|
if (manifold.PointCount == 0)
|
|
{
|
|
return;
|
|
}
|
|
|
|
switch (manifold.Type)
|
|
{
|
|
case ManifoldType.Circles:
|
|
{
|
|
normal = new Vector2(1.0f, 0.0f);
|
|
Vector2 pointA = Transform.Mul(xfA, manifold.LocalPoint);
|
|
Vector2 pointB = Transform.Mul(xfB, manifold.Points[0].LocalPoint);
|
|
|
|
if ((pointA - pointB).LengthSquared > float.Epsilon * float.Epsilon)
|
|
{
|
|
normal = pointB - pointA;
|
|
normal = normal.Normalized;
|
|
}
|
|
|
|
Vector2 cA = pointA + normal * radiusA;
|
|
Vector2 cB = pointB - normal * radiusB;
|
|
points[0] = (cA + cB) * 0.5f;
|
|
}
|
|
break;
|
|
|
|
case ManifoldType.FaceA:
|
|
{
|
|
normal = Transform.Mul(xfA.Quaternion2D, manifold.LocalNormal);
|
|
Vector2 planePoint = Transform.Mul(xfA, manifold.LocalPoint);
|
|
|
|
for (int i = 0; i < manifold.PointCount; ++i)
|
|
{
|
|
Vector2 clipPoint = Transform.Mul(xfB, manifold.Points[i].LocalPoint);
|
|
Vector2 cA = clipPoint + normal * (radiusA - Vector2.Dot(clipPoint - planePoint, normal));
|
|
Vector2 cB = clipPoint - normal * radiusB;
|
|
points[i] = (cA + cB) * 0.5f;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case ManifoldType.FaceB:
|
|
{
|
|
normal = Transform.Mul(xfB.Quaternion2D, manifold.LocalNormal);
|
|
Vector2 planePoint = Transform.Mul(xfB, manifold.LocalPoint);
|
|
|
|
for (int i = 0; i < manifold.PointCount; ++i)
|
|
{
|
|
Vector2 clipPoint = Transform.Mul(xfA, manifold.Points[i].LocalPoint);
|
|
Vector2 cB = clipPoint + normal * (radiusB - Vector2.Dot(clipPoint - planePoint, normal));
|
|
Vector2 cA = clipPoint - normal * radiusA;
|
|
points[i] = (cA + cB) * 0.5f;
|
|
}
|
|
|
|
// Ensure normal points from A to B.
|
|
normal = -normal;
|
|
}
|
|
break;
|
|
default:
|
|
// Shouldn't happentm
|
|
throw new InvalidOperationException();
|
|
|
|
}
|
|
}
|
|
|
|
private static void PositionSolverManifoldInitialize(
|
|
in ContactPositionConstraint pc,
|
|
int index,
|
|
in Transform xfA,
|
|
in Transform xfB,
|
|
out Vector2 normal,
|
|
out Vector2 point,
|
|
out float separation)
|
|
{
|
|
DebugTools.Assert(pc.PointCount > 0);
|
|
|
|
switch (pc.Type)
|
|
{
|
|
case ManifoldType.Circles:
|
|
{
|
|
Vector2 pointA = Transform.Mul(xfA, pc.LocalPoint);
|
|
Vector2 pointB = Transform.Mul(xfB, pc.LocalPoints[0]);
|
|
normal = pointB - pointA;
|
|
|
|
//FPE: Fix to handle zero normalization
|
|
if (normal != Vector2.Zero)
|
|
normal = normal.Normalized;
|
|
|
|
point = (pointA + pointB) * 0.5f;
|
|
separation = Vector2.Dot(pointB - pointA, normal) - pc.RadiusA - pc.RadiusB;
|
|
}
|
|
break;
|
|
|
|
case ManifoldType.FaceA:
|
|
{
|
|
normal = Transform.Mul(xfA.Quaternion2D, pc.LocalNormal);
|
|
Vector2 planePoint = Transform.Mul(xfA, pc.LocalPoint);
|
|
|
|
Vector2 clipPoint = Transform.Mul(xfB, pc.LocalPoints[index]);
|
|
separation = Vector2.Dot(clipPoint - planePoint, normal) - pc.RadiusA - pc.RadiusB;
|
|
point = clipPoint;
|
|
}
|
|
break;
|
|
|
|
case ManifoldType.FaceB:
|
|
{
|
|
normal = Transform.Mul(xfB.Quaternion2D, pc.LocalNormal);
|
|
Vector2 planePoint = Transform.Mul(xfB, pc.LocalPoint);
|
|
|
|
Vector2 clipPoint = Transform.Mul(xfA, pc.LocalPoints[index]);
|
|
separation = Vector2.Dot(clipPoint - planePoint, normal) - pc.RadiusA - pc.RadiusB;
|
|
point = clipPoint;
|
|
|
|
// Ensure normal points from A to B
|
|
normal = -normal;
|
|
}
|
|
break;
|
|
default:
|
|
normal = Vector2.Zero;
|
|
point = Vector2.Zero;
|
|
separation = 0;
|
|
break;
|
|
|
|
}
|
|
}
|
|
}
|
|
}
|