Files
RobustToolbox/Robust.Shared/Physics/Transform.cs
Leon Friedrich 3f19d25018 Box Simd (#6193)
* Box Simd

* Add 256 bit version of GetAABB

* Add AABB bechmarks

* No real diff between 128 & 256, so removing 256

| Method     | Mean      | Error     | StdDev    | Ratio |
|----------- |----------:|----------:|----------:|------:|
| GetAABB    | 5.8107 ns | 0.0154 ns | 0.0137 ns |  1.00 |
| GetAABB128 | 0.4927 ns | 0.0003 ns | 0.0002 ns |  0.08 |
| GetAABB256 | 0.4332 ns | 0.0006 ns | 0.0006 ns |  0.07 |

* Add Box2Rotated.Transform Benchmark

* Results

20% faster and much smaller code. Also I don't think it inlined RotateVec

* Add Matrix3x2Helper.TransformBox() benchmark

new:

| Method    | Mean     | Error     | StdDev    | Code Size |
|---------- |---------:|----------:|----------:|----------:|
| Transform | 2.463 ns | 0.0766 ns | 0.0679 ns |     216 B |

old:
| Method    | Mean     | Error     | StdDev    | Median   | Code Size |
|---------- |---------:|----------:|----------:|---------:|----------:|
| Transform | 9.469 ns | 0.2140 ns | 0.5408 ns | 9.206 ns |     621 B |

* Fix polygon constructor

* SlimPolygonBenchmark

* use new SimdHelper for other methods

* Fix bugs

* Use new methods

* Simd SlimPolygon.ComputeAABB

* Move simd transform to physics

* Cleanup

* Remove uneccesary Unsafe.SkipInit

* These tests all work on master

* Add Transform.MulSimd test

* Add SlimPolygon constructor tests

* Add ComputeAABB test

---------

Co-authored-by: metalgearsloth <31366439+metalgearsloth@users.noreply.github.com>
2025-11-10 18:30:08 +11:00

279 lines
9.1 KiB
C#

/*
* Farseer Physics Engine:
* Copyright (c) 2012 Ian Qvist
*
* Original source Box2D:
* Copyright (c) 2006-2011 Erin Catto http://www.box2d.org
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
using System;
using System.Numerics;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;
using System.Runtime.Intrinsics;
using JetBrains.Annotations;
using Robust.Shared.Maths;
using Robust.Shared.Utility;
namespace Robust.Shared.Physics
{
// TODO: Probably replace this internally with just the Vector2 and radians but I'd need to re-learn trig so yeah....
public struct Transform
{
public static readonly Transform Empty = new Transform(0f);
public Vector2 Position;
public Quaternion2D Quaternion2D;
public Transform(Vector2 position, Quaternion2D quat)
{
Position = position;
Quaternion2D = quat;
}
public Transform(Vector2 position, float angle)
{
Position = position;
Quaternion2D = new Quaternion2D(angle);
}
public Transform(float angle)
{
Position = Vector2.Zero;
Quaternion2D = new Quaternion2D(angle);
}
public Transform(Vector2 position, Angle angle)
{
Position = position;
Quaternion2D = new Quaternion2D(angle);
}
/// Inverse transform a point (e.g. world space to local space)
[Pure]
public static Vector2 InvTransformPoint(Transform t, Vector2 p)
{
float vx = p.X - t.Position.X;
float vy = p.Y - t.Position.Y;
return new Vector2(t.Quaternion2D.C * vx + t.Quaternion2D.S * vy, -t.Quaternion2D.S * vx + t.Quaternion2D.C * vy);
}
[Pure]
public static Vector2 Mul(in Transform transform, in Vector2 vector)
{
float x = (transform.Quaternion2D.C * vector.X - transform.Quaternion2D.S * vector.Y) + transform.Position.X;
float y = (transform.Quaternion2D.S * vector.X + transform.Quaternion2D.C * vector.Y) + transform.Position.Y;
return new Vector2(x, y);
}
// Simd version of Mul
// I wanted to put this in SimdHelpers, but ran into some Robust.Math project reference issues.
[MethodImpl(MethodImplOptions.AggressiveInlining)]
[Pure]
internal static void MulSimd(
in Transform transform,
Vector128<float> x,
Vector128<float> y,
out Vector128<float> xOut,
out Vector128<float> yOut)
{
var cos = Vector128.Create(transform.Quaternion2D.C);
var sin = Vector128.Create(transform.Quaternion2D.S);
xOut = cos * x - sin * y + Vector128.Create(transform.Position.X);
yOut = sin * x + cos * y + Vector128.Create(transform.Position.Y);
}
[Pure]
public static Vector2 MulT(in Vector2[] A, in Vector2 v)
{
DebugTools.Assert(A.Length == 2);
return new Vector2(v.X * A[0].X + v.Y * A[0].Y, v.X * A[1].X + v.Y * A[1].Y);
}
[Pure]
public static Vector2 MulT(in Transform T, in Vector2 v)
{
float px = v.X - T.Position.X;
float py = v.Y - T.Position.Y;
float x = (T.Quaternion2D.C * px + T.Quaternion2D.S * py);
float y = (-T.Quaternion2D.S * px + T.Quaternion2D.C * py);
return new Vector2(x, y);
}
/// Transpose multiply two rotations: qT * r
[Pure]
public static Quaternion2D MulT(in Quaternion2D q, in Quaternion2D r)
{
// [ qc qs] * [rc -rs] = [qc*rc+qs*rs -qc*rs+qs*rc]
// [-qs qc] [rs rc] [-qs*rc+qc*rs qs*rs+qc*rc]
// s = qc * rs - qs * rc
// c = qc * rc + qs * rs
Quaternion2D qr;
qr.S = q.C * r.S - q.S * r.C;
qr.C = q.C * r.C + q.S * r.S;
return qr;
}
[Pure]
public static Transform InvMulTransforms(in Transform A, in Transform B)
{
return new Transform(Quaternion2D.InvRotateVector(A.Quaternion2D, Vector2.Subtract(B.Position, A.Position)), Quaternion2D.InvMulRot(A.Quaternion2D, B.Quaternion2D));
}
// v2 = A.q' * (B.q * v1 + B.p - A.p)
// = A.q' * B.q * v1 + A.q' * (B.p - A.p)
[Pure]
public static Transform MulT(in Transform A, in Transform B)
{
Transform C = new Transform
{
Quaternion2D = MulT(A.Quaternion2D, B.Quaternion2D),
Position = MulT(A.Quaternion2D, B.Position - A.Position)
};
return C;
}
/// <summary>
/// Inverse rotate a vector
/// </summary>
/// <param name="q"></param>
/// <param name="v"></param>
/// <returns></returns>
public static Vector2 MulT(Quaternion2D q, Vector2 v)
{
return new(q.C * v.X + q.S * v.Y, -q.S * v.X + q.C * v.Y);
}
/// <summary>
/// Rotate a vector
/// </summary>
/// <param name="quaternion2D"></param>
/// <param name="vector"></param>
/// <returns></returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static Vector2 Mul(in Quaternion2D quaternion2D, in Vector2 vector)
{
return new(quaternion2D.C * vector.X - quaternion2D.S * vector.Y, quaternion2D.S * vector.X + quaternion2D.C * vector.Y);
}
public static Vector2 Mul(System.Numerics.Vector4 A, Vector2 v)
{
return new Vector2(A.X * v.X + A.Y * v.Y, A.Z * v.X + A.W * v.Y);
}
public static Vector2 Mul(in Vector2[] A, in Vector2 v)
{
// A needing to be a 2 x 2 matrix
DebugTools.Assert(A.Length == 2);
return new Vector2(A[0].X * v.X + A[1].X * v.Y, A[0].Y * v.X + A[1].Y * v.Y);
}
public static Vector2 Mul(Matrix22 A, Vector2 v)
{
return new Vector2(A.EX.X * v.X + A.EY.X * v.Y, A.EX.Y * v.X + A.EY.Y * v.Y);
}
}
public struct Quaternion2D
{
public float C;
public float S;
public float Angle => MathF.Atan2(S, C);
public Quaternion2D(float cos, float sin)
{
C = cos;
S = sin;
}
public Quaternion2D(float angle)
{
C = MathF.Cos(angle);
S = MathF.Sin(angle);
}
public Quaternion2D(Angle angle)
{
var radians = angle.Theta;
C = (float) Math.Cos(radians);
S = (float) Math.Sin(radians);
}
public Quaternion2D Set(float angle)
{
//FPE: Optimization
if (angle == 0.0f)
{
return new Quaternion2D(1.0f, 0.0f);
}
// TODO_ERIN optimize
return new Quaternion2D(MathF.Cos(angle), MathF.Sin(angle));
}
/// Rotate a vector
[Pure]
public static Vector2 RotateVector(Quaternion2D q, Vector2 v )
{
return new Vector2(q.C * v.X - q.S * v.Y, q.S * v.X + q.C * v.Y);
}
/// Inverse rotate a vector
[Pure]
public static Vector2 InvRotateVector(Quaternion2D q, Vector2 v)
{
return new Vector2(q.C * v.X + q.S * v.Y, -q.S * v.X + q.C * v.Y);
}
public bool IsValid()
{
if (float.IsNaN(S ) || float.IsNaN(C))
{
return false;
}
if (float.IsInfinity(S) || float.IsInfinity(C))
{
return false;
}
return IsNormalized();
}
public bool IsNormalized()
{
// larger tolerance due to failure on mingw 32-bit
float qq = S * S + C * C;
return 1.0f - 0.0006f < qq && qq < 1.0f + 0.0006f;
}
[Pure]
public static Quaternion2D InvMulRot(Quaternion2D q, Quaternion2D r)
{
// [ qc qs] * [rc -rs] = [qc*rc+qs*rs -qc*rs+qs*rc]
// [-qs qc] [rs rc] [-qs*rc+qc*rs qs*rs+qc*rc]
// s(q - r) = qc * rs - qs * rc
// c(q - r) = qc * rc + qs * rs
return new Quaternion2D(q.C * r.C + q.S * r.S, q.C * r.S - q.S * r.C);
}
}
}